Properties

Label 322.2.a.e.1.2
Level $322$
Weight $2$
Character 322.1
Self dual yes
Analytic conductor $2.571$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [322,2,Mod(1,322)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(322, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("322.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 322.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.57118294509\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 322.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.23607 q^{3} +1.00000 q^{4} -3.23607 q^{5} -1.23607 q^{6} -1.00000 q^{7} -1.00000 q^{8} -1.47214 q^{9} +3.23607 q^{10} +1.23607 q^{12} -6.47214 q^{13} +1.00000 q^{14} -4.00000 q^{15} +1.00000 q^{16} -2.76393 q^{17} +1.47214 q^{18} +4.47214 q^{19} -3.23607 q^{20} -1.23607 q^{21} -1.00000 q^{23} -1.23607 q^{24} +5.47214 q^{25} +6.47214 q^{26} -5.52786 q^{27} -1.00000 q^{28} -2.00000 q^{29} +4.00000 q^{30} +3.23607 q^{31} -1.00000 q^{32} +2.76393 q^{34} +3.23607 q^{35} -1.47214 q^{36} +6.00000 q^{37} -4.47214 q^{38} -8.00000 q^{39} +3.23607 q^{40} -10.0000 q^{41} +1.23607 q^{42} +2.47214 q^{43} +4.76393 q^{45} +1.00000 q^{46} -11.2361 q^{47} +1.23607 q^{48} +1.00000 q^{49} -5.47214 q^{50} -3.41641 q^{51} -6.47214 q^{52} -6.00000 q^{53} +5.52786 q^{54} +1.00000 q^{56} +5.52786 q^{57} +2.00000 q^{58} +6.76393 q^{59} -4.00000 q^{60} -1.70820 q^{61} -3.23607 q^{62} +1.47214 q^{63} +1.00000 q^{64} +20.9443 q^{65} +4.00000 q^{67} -2.76393 q^{68} -1.23607 q^{69} -3.23607 q^{70} +6.47214 q^{71} +1.47214 q^{72} +13.4164 q^{73} -6.00000 q^{74} +6.76393 q^{75} +4.47214 q^{76} +8.00000 q^{78} -8.94427 q^{79} -3.23607 q^{80} -2.41641 q^{81} +10.0000 q^{82} +10.9443 q^{83} -1.23607 q^{84} +8.94427 q^{85} -2.47214 q^{86} -2.47214 q^{87} +6.18034 q^{89} -4.76393 q^{90} +6.47214 q^{91} -1.00000 q^{92} +4.00000 q^{93} +11.2361 q^{94} -14.4721 q^{95} -1.23607 q^{96} -14.1803 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 6 q^{9} + 2 q^{10} - 2 q^{12} - 4 q^{13} + 2 q^{14} - 8 q^{15} + 2 q^{16} - 10 q^{17} - 6 q^{18} - 2 q^{20} + 2 q^{21} - 2 q^{23}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.23607 0.713644 0.356822 0.934172i \(-0.383860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.23607 −1.44721 −0.723607 0.690212i \(-0.757517\pi\)
−0.723607 + 0.690212i \(0.757517\pi\)
\(6\) −1.23607 −0.504623
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) −1.47214 −0.490712
\(10\) 3.23607 1.02333
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.23607 0.356822
\(13\) −6.47214 −1.79505 −0.897524 0.440966i \(-0.854636\pi\)
−0.897524 + 0.440966i \(0.854636\pi\)
\(14\) 1.00000 0.267261
\(15\) −4.00000 −1.03280
\(16\) 1.00000 0.250000
\(17\) −2.76393 −0.670352 −0.335176 0.942156i \(-0.608796\pi\)
−0.335176 + 0.942156i \(0.608796\pi\)
\(18\) 1.47214 0.346986
\(19\) 4.47214 1.02598 0.512989 0.858395i \(-0.328538\pi\)
0.512989 + 0.858395i \(0.328538\pi\)
\(20\) −3.23607 −0.723607
\(21\) −1.23607 −0.269732
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) −1.23607 −0.252311
\(25\) 5.47214 1.09443
\(26\) 6.47214 1.26929
\(27\) −5.52786 −1.06384
\(28\) −1.00000 −0.188982
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 4.00000 0.730297
\(31\) 3.23607 0.581215 0.290607 0.956842i \(-0.406143\pi\)
0.290607 + 0.956842i \(0.406143\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 2.76393 0.474010
\(35\) 3.23607 0.546995
\(36\) −1.47214 −0.245356
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.47214 −0.725476
\(39\) −8.00000 −1.28103
\(40\) 3.23607 0.511667
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 1.23607 0.190729
\(43\) 2.47214 0.376997 0.188499 0.982073i \(-0.439638\pi\)
0.188499 + 0.982073i \(0.439638\pi\)
\(44\) 0 0
\(45\) 4.76393 0.710165
\(46\) 1.00000 0.147442
\(47\) −11.2361 −1.63895 −0.819474 0.573116i \(-0.805735\pi\)
−0.819474 + 0.573116i \(0.805735\pi\)
\(48\) 1.23607 0.178411
\(49\) 1.00000 0.142857
\(50\) −5.47214 −0.773877
\(51\) −3.41641 −0.478393
\(52\) −6.47214 −0.897524
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 5.52786 0.752247
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 5.52786 0.732183
\(58\) 2.00000 0.262613
\(59\) 6.76393 0.880589 0.440294 0.897853i \(-0.354874\pi\)
0.440294 + 0.897853i \(0.354874\pi\)
\(60\) −4.00000 −0.516398
\(61\) −1.70820 −0.218713 −0.109357 0.994003i \(-0.534879\pi\)
−0.109357 + 0.994003i \(0.534879\pi\)
\(62\) −3.23607 −0.410981
\(63\) 1.47214 0.185472
\(64\) 1.00000 0.125000
\(65\) 20.9443 2.59782
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −2.76393 −0.335176
\(69\) −1.23607 −0.148805
\(70\) −3.23607 −0.386784
\(71\) 6.47214 0.768101 0.384051 0.923312i \(-0.374529\pi\)
0.384051 + 0.923312i \(0.374529\pi\)
\(72\) 1.47214 0.173493
\(73\) 13.4164 1.57027 0.785136 0.619324i \(-0.212593\pi\)
0.785136 + 0.619324i \(0.212593\pi\)
\(74\) −6.00000 −0.697486
\(75\) 6.76393 0.781032
\(76\) 4.47214 0.512989
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −8.94427 −1.00631 −0.503155 0.864196i \(-0.667827\pi\)
−0.503155 + 0.864196i \(0.667827\pi\)
\(80\) −3.23607 −0.361803
\(81\) −2.41641 −0.268490
\(82\) 10.0000 1.10432
\(83\) 10.9443 1.20129 0.600645 0.799516i \(-0.294911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(84\) −1.23607 −0.134866
\(85\) 8.94427 0.970143
\(86\) −2.47214 −0.266577
\(87\) −2.47214 −0.265041
\(88\) 0 0
\(89\) 6.18034 0.655115 0.327557 0.944831i \(-0.393775\pi\)
0.327557 + 0.944831i \(0.393775\pi\)
\(90\) −4.76393 −0.502163
\(91\) 6.47214 0.678464
\(92\) −1.00000 −0.104257
\(93\) 4.00000 0.414781
\(94\) 11.2361 1.15891
\(95\) −14.4721 −1.48481
\(96\) −1.23607 −0.126156
\(97\) −14.1803 −1.43980 −0.719898 0.694080i \(-0.755811\pi\)
−0.719898 + 0.694080i \(0.755811\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 5.47214 0.547214
\(101\) −5.52786 −0.550043 −0.275022 0.961438i \(-0.588685\pi\)
−0.275022 + 0.961438i \(0.588685\pi\)
\(102\) 3.41641 0.338275
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 6.47214 0.634645
\(105\) 4.00000 0.390360
\(106\) 6.00000 0.582772
\(107\) −1.52786 −0.147704 −0.0738521 0.997269i \(-0.523529\pi\)
−0.0738521 + 0.997269i \(0.523529\pi\)
\(108\) −5.52786 −0.531919
\(109\) 12.4721 1.19461 0.597307 0.802013i \(-0.296237\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(110\) 0 0
\(111\) 7.41641 0.703934
\(112\) −1.00000 −0.0944911
\(113\) 12.4721 1.17328 0.586640 0.809848i \(-0.300450\pi\)
0.586640 + 0.809848i \(0.300450\pi\)
\(114\) −5.52786 −0.517732
\(115\) 3.23607 0.301765
\(116\) −2.00000 −0.185695
\(117\) 9.52786 0.880851
\(118\) −6.76393 −0.622670
\(119\) 2.76393 0.253369
\(120\) 4.00000 0.365148
\(121\) −11.0000 −1.00000
\(122\) 1.70820 0.154654
\(123\) −12.3607 −1.11452
\(124\) 3.23607 0.290607
\(125\) −1.52786 −0.136656
\(126\) −1.47214 −0.131148
\(127\) −19.4164 −1.72293 −0.861464 0.507819i \(-0.830452\pi\)
−0.861464 + 0.507819i \(0.830452\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 3.05573 0.269042
\(130\) −20.9443 −1.83693
\(131\) −17.2361 −1.50592 −0.752961 0.658065i \(-0.771375\pi\)
−0.752961 + 0.658065i \(0.771375\pi\)
\(132\) 0 0
\(133\) −4.47214 −0.387783
\(134\) −4.00000 −0.345547
\(135\) 17.8885 1.53960
\(136\) 2.76393 0.237005
\(137\) −9.41641 −0.804498 −0.402249 0.915530i \(-0.631771\pi\)
−0.402249 + 0.915530i \(0.631771\pi\)
\(138\) 1.23607 0.105221
\(139\) −23.1246 −1.96140 −0.980702 0.195509i \(-0.937364\pi\)
−0.980702 + 0.195509i \(0.937364\pi\)
\(140\) 3.23607 0.273498
\(141\) −13.8885 −1.16963
\(142\) −6.47214 −0.543130
\(143\) 0 0
\(144\) −1.47214 −0.122678
\(145\) 6.47214 0.537482
\(146\) −13.4164 −1.11035
\(147\) 1.23607 0.101949
\(148\) 6.00000 0.493197
\(149\) 21.4164 1.75450 0.877250 0.480033i \(-0.159375\pi\)
0.877250 + 0.480033i \(0.159375\pi\)
\(150\) −6.76393 −0.552273
\(151\) −9.52786 −0.775367 −0.387683 0.921793i \(-0.626725\pi\)
−0.387683 + 0.921793i \(0.626725\pi\)
\(152\) −4.47214 −0.362738
\(153\) 4.06888 0.328950
\(154\) 0 0
\(155\) −10.4721 −0.841142
\(156\) −8.00000 −0.640513
\(157\) −18.6525 −1.48863 −0.744315 0.667829i \(-0.767224\pi\)
−0.744315 + 0.667829i \(0.767224\pi\)
\(158\) 8.94427 0.711568
\(159\) −7.41641 −0.588159
\(160\) 3.23607 0.255834
\(161\) 1.00000 0.0788110
\(162\) 2.41641 0.189851
\(163\) −6.47214 −0.506937 −0.253468 0.967344i \(-0.581571\pi\)
−0.253468 + 0.967344i \(0.581571\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −10.9443 −0.849440
\(167\) −6.65248 −0.514784 −0.257392 0.966307i \(-0.582863\pi\)
−0.257392 + 0.966307i \(0.582863\pi\)
\(168\) 1.23607 0.0953647
\(169\) 28.8885 2.22220
\(170\) −8.94427 −0.685994
\(171\) −6.58359 −0.503460
\(172\) 2.47214 0.188499
\(173\) 3.05573 0.232323 0.116161 0.993230i \(-0.462941\pi\)
0.116161 + 0.993230i \(0.462941\pi\)
\(174\) 2.47214 0.187412
\(175\) −5.47214 −0.413655
\(176\) 0 0
\(177\) 8.36068 0.628427
\(178\) −6.18034 −0.463236
\(179\) 16.9443 1.26647 0.633237 0.773958i \(-0.281726\pi\)
0.633237 + 0.773958i \(0.281726\pi\)
\(180\) 4.76393 0.355083
\(181\) 8.76393 0.651418 0.325709 0.945470i \(-0.394397\pi\)
0.325709 + 0.945470i \(0.394397\pi\)
\(182\) −6.47214 −0.479747
\(183\) −2.11146 −0.156083
\(184\) 1.00000 0.0737210
\(185\) −19.4164 −1.42752
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) −11.2361 −0.819474
\(189\) 5.52786 0.402093
\(190\) 14.4721 1.04992
\(191\) 3.05573 0.221105 0.110552 0.993870i \(-0.464738\pi\)
0.110552 + 0.993870i \(0.464738\pi\)
\(192\) 1.23607 0.0892055
\(193\) −5.05573 −0.363919 −0.181960 0.983306i \(-0.558244\pi\)
−0.181960 + 0.983306i \(0.558244\pi\)
\(194\) 14.1803 1.01809
\(195\) 25.8885 1.85392
\(196\) 1.00000 0.0714286
\(197\) −19.8885 −1.41700 −0.708500 0.705711i \(-0.750628\pi\)
−0.708500 + 0.705711i \(0.750628\pi\)
\(198\) 0 0
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) −5.47214 −0.386938
\(201\) 4.94427 0.348742
\(202\) 5.52786 0.388939
\(203\) 2.00000 0.140372
\(204\) −3.41641 −0.239196
\(205\) 32.3607 2.26017
\(206\) 4.00000 0.278693
\(207\) 1.47214 0.102321
\(208\) −6.47214 −0.448762
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 16.9443 1.16649 0.583246 0.812296i \(-0.301782\pi\)
0.583246 + 0.812296i \(0.301782\pi\)
\(212\) −6.00000 −0.412082
\(213\) 8.00000 0.548151
\(214\) 1.52786 0.104443
\(215\) −8.00000 −0.545595
\(216\) 5.52786 0.376124
\(217\) −3.23607 −0.219679
\(218\) −12.4721 −0.844720
\(219\) 16.5836 1.12062
\(220\) 0 0
\(221\) 17.8885 1.20331
\(222\) −7.41641 −0.497757
\(223\) −10.6525 −0.713343 −0.356671 0.934230i \(-0.616088\pi\)
−0.356671 + 0.934230i \(0.616088\pi\)
\(224\) 1.00000 0.0668153
\(225\) −8.05573 −0.537049
\(226\) −12.4721 −0.829634
\(227\) −21.4164 −1.42146 −0.710728 0.703466i \(-0.751635\pi\)
−0.710728 + 0.703466i \(0.751635\pi\)
\(228\) 5.52786 0.366092
\(229\) −15.2361 −1.00683 −0.503414 0.864045i \(-0.667923\pi\)
−0.503414 + 0.864045i \(0.667923\pi\)
\(230\) −3.23607 −0.213380
\(231\) 0 0
\(232\) 2.00000 0.131306
\(233\) −16.4721 −1.07913 −0.539563 0.841945i \(-0.681410\pi\)
−0.539563 + 0.841945i \(0.681410\pi\)
\(234\) −9.52786 −0.622856
\(235\) 36.3607 2.37191
\(236\) 6.76393 0.440294
\(237\) −11.0557 −0.718147
\(238\) −2.76393 −0.179159
\(239\) 6.47214 0.418648 0.209324 0.977846i \(-0.432874\pi\)
0.209324 + 0.977846i \(0.432874\pi\)
\(240\) −4.00000 −0.258199
\(241\) 0.291796 0.0187962 0.00939812 0.999956i \(-0.497008\pi\)
0.00939812 + 0.999956i \(0.497008\pi\)
\(242\) 11.0000 0.707107
\(243\) 13.5967 0.872232
\(244\) −1.70820 −0.109357
\(245\) −3.23607 −0.206745
\(246\) 12.3607 0.788088
\(247\) −28.9443 −1.84168
\(248\) −3.23607 −0.205491
\(249\) 13.5279 0.857294
\(250\) 1.52786 0.0966306
\(251\) −4.47214 −0.282279 −0.141139 0.989990i \(-0.545077\pi\)
−0.141139 + 0.989990i \(0.545077\pi\)
\(252\) 1.47214 0.0927358
\(253\) 0 0
\(254\) 19.4164 1.21829
\(255\) 11.0557 0.692337
\(256\) 1.00000 0.0625000
\(257\) −26.9443 −1.68074 −0.840369 0.542015i \(-0.817662\pi\)
−0.840369 + 0.542015i \(0.817662\pi\)
\(258\) −3.05573 −0.190241
\(259\) −6.00000 −0.372822
\(260\) 20.9443 1.29891
\(261\) 2.94427 0.182246
\(262\) 17.2361 1.06485
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 19.4164 1.19274
\(266\) 4.47214 0.274204
\(267\) 7.63932 0.467519
\(268\) 4.00000 0.244339
\(269\) 3.05573 0.186311 0.0931555 0.995652i \(-0.470305\pi\)
0.0931555 + 0.995652i \(0.470305\pi\)
\(270\) −17.8885 −1.08866
\(271\) −15.2361 −0.925525 −0.462763 0.886482i \(-0.653142\pi\)
−0.462763 + 0.886482i \(0.653142\pi\)
\(272\) −2.76393 −0.167588
\(273\) 8.00000 0.484182
\(274\) 9.41641 0.568866
\(275\) 0 0
\(276\) −1.23607 −0.0744025
\(277\) 19.8885 1.19499 0.597493 0.801874i \(-0.296163\pi\)
0.597493 + 0.801874i \(0.296163\pi\)
\(278\) 23.1246 1.38692
\(279\) −4.76393 −0.285209
\(280\) −3.23607 −0.193392
\(281\) 5.41641 0.323116 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(282\) 13.8885 0.827051
\(283\) 4.47214 0.265841 0.132920 0.991127i \(-0.457565\pi\)
0.132920 + 0.991127i \(0.457565\pi\)
\(284\) 6.47214 0.384051
\(285\) −17.8885 −1.05963
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) 1.47214 0.0867464
\(289\) −9.36068 −0.550628
\(290\) −6.47214 −0.380057
\(291\) −17.5279 −1.02750
\(292\) 13.4164 0.785136
\(293\) −29.1246 −1.70148 −0.850739 0.525588i \(-0.823845\pi\)
−0.850739 + 0.525588i \(0.823845\pi\)
\(294\) −1.23607 −0.0720889
\(295\) −21.8885 −1.27440
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) −21.4164 −1.24062
\(299\) 6.47214 0.374293
\(300\) 6.76393 0.390516
\(301\) −2.47214 −0.142492
\(302\) 9.52786 0.548267
\(303\) −6.83282 −0.392535
\(304\) 4.47214 0.256495
\(305\) 5.52786 0.316525
\(306\) −4.06888 −0.232603
\(307\) 29.2361 1.66859 0.834295 0.551318i \(-0.185875\pi\)
0.834295 + 0.551318i \(0.185875\pi\)
\(308\) 0 0
\(309\) −4.94427 −0.281270
\(310\) 10.4721 0.594777
\(311\) 25.1246 1.42469 0.712343 0.701831i \(-0.247634\pi\)
0.712343 + 0.701831i \(0.247634\pi\)
\(312\) 8.00000 0.452911
\(313\) 26.1803 1.47980 0.739900 0.672717i \(-0.234873\pi\)
0.739900 + 0.672717i \(0.234873\pi\)
\(314\) 18.6525 1.05262
\(315\) −4.76393 −0.268417
\(316\) −8.94427 −0.503155
\(317\) 10.0000 0.561656 0.280828 0.959758i \(-0.409391\pi\)
0.280828 + 0.959758i \(0.409391\pi\)
\(318\) 7.41641 0.415892
\(319\) 0 0
\(320\) −3.23607 −0.180902
\(321\) −1.88854 −0.105408
\(322\) −1.00000 −0.0557278
\(323\) −12.3607 −0.687767
\(324\) −2.41641 −0.134245
\(325\) −35.4164 −1.96455
\(326\) 6.47214 0.358458
\(327\) 15.4164 0.852529
\(328\) 10.0000 0.552158
\(329\) 11.2361 0.619464
\(330\) 0 0
\(331\) −30.4721 −1.67490 −0.837450 0.546514i \(-0.815955\pi\)
−0.837450 + 0.546514i \(0.815955\pi\)
\(332\) 10.9443 0.600645
\(333\) −8.83282 −0.484035
\(334\) 6.65248 0.364007
\(335\) −12.9443 −0.707221
\(336\) −1.23607 −0.0674330
\(337\) −35.8885 −1.95497 −0.977487 0.210997i \(-0.932329\pi\)
−0.977487 + 0.210997i \(0.932329\pi\)
\(338\) −28.8885 −1.57133
\(339\) 15.4164 0.837304
\(340\) 8.94427 0.485071
\(341\) 0 0
\(342\) 6.58359 0.356000
\(343\) −1.00000 −0.0539949
\(344\) −2.47214 −0.133289
\(345\) 4.00000 0.215353
\(346\) −3.05573 −0.164277
\(347\) 24.3607 1.30775 0.653875 0.756603i \(-0.273142\pi\)
0.653875 + 0.756603i \(0.273142\pi\)
\(348\) −2.47214 −0.132520
\(349\) −3.05573 −0.163569 −0.0817847 0.996650i \(-0.526062\pi\)
−0.0817847 + 0.996650i \(0.526062\pi\)
\(350\) 5.47214 0.292498
\(351\) 35.7771 1.90964
\(352\) 0 0
\(353\) 0.472136 0.0251293 0.0125646 0.999921i \(-0.496000\pi\)
0.0125646 + 0.999921i \(0.496000\pi\)
\(354\) −8.36068 −0.444365
\(355\) −20.9443 −1.11161
\(356\) 6.18034 0.327557
\(357\) 3.41641 0.180815
\(358\) −16.9443 −0.895533
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) −4.76393 −0.251081
\(361\) 1.00000 0.0526316
\(362\) −8.76393 −0.460622
\(363\) −13.5967 −0.713644
\(364\) 6.47214 0.339232
\(365\) −43.4164 −2.27252
\(366\) 2.11146 0.110368
\(367\) 24.3607 1.27162 0.635809 0.771847i \(-0.280667\pi\)
0.635809 + 0.771847i \(0.280667\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 14.7214 0.766363
\(370\) 19.4164 1.00941
\(371\) 6.00000 0.311504
\(372\) 4.00000 0.207390
\(373\) −10.5836 −0.547998 −0.273999 0.961730i \(-0.588346\pi\)
−0.273999 + 0.961730i \(0.588346\pi\)
\(374\) 0 0
\(375\) −1.88854 −0.0975240
\(376\) 11.2361 0.579456
\(377\) 12.9443 0.666664
\(378\) −5.52786 −0.284323
\(379\) −17.8885 −0.918873 −0.459436 0.888211i \(-0.651949\pi\)
−0.459436 + 0.888211i \(0.651949\pi\)
\(380\) −14.4721 −0.742405
\(381\) −24.0000 −1.22956
\(382\) −3.05573 −0.156345
\(383\) −0.583592 −0.0298202 −0.0149101 0.999889i \(-0.504746\pi\)
−0.0149101 + 0.999889i \(0.504746\pi\)
\(384\) −1.23607 −0.0630778
\(385\) 0 0
\(386\) 5.05573 0.257330
\(387\) −3.63932 −0.184997
\(388\) −14.1803 −0.719898
\(389\) 9.41641 0.477431 0.238715 0.971090i \(-0.423274\pi\)
0.238715 + 0.971090i \(0.423274\pi\)
\(390\) −25.8885 −1.31092
\(391\) 2.76393 0.139778
\(392\) −1.00000 −0.0505076
\(393\) −21.3050 −1.07469
\(394\) 19.8885 1.00197
\(395\) 28.9443 1.45634
\(396\) 0 0
\(397\) 14.4721 0.726336 0.363168 0.931724i \(-0.381695\pi\)
0.363168 + 0.931724i \(0.381695\pi\)
\(398\) 12.0000 0.601506
\(399\) −5.52786 −0.276739
\(400\) 5.47214 0.273607
\(401\) −37.7771 −1.88650 −0.943249 0.332087i \(-0.892247\pi\)
−0.943249 + 0.332087i \(0.892247\pi\)
\(402\) −4.94427 −0.246598
\(403\) −20.9443 −1.04331
\(404\) −5.52786 −0.275022
\(405\) 7.81966 0.388562
\(406\) −2.00000 −0.0992583
\(407\) 0 0
\(408\) 3.41641 0.169137
\(409\) 28.4721 1.40786 0.703928 0.710271i \(-0.251428\pi\)
0.703928 + 0.710271i \(0.251428\pi\)
\(410\) −32.3607 −1.59818
\(411\) −11.6393 −0.574125
\(412\) −4.00000 −0.197066
\(413\) −6.76393 −0.332831
\(414\) −1.47214 −0.0723515
\(415\) −35.4164 −1.73852
\(416\) 6.47214 0.317323
\(417\) −28.5836 −1.39974
\(418\) 0 0
\(419\) 34.3607 1.67863 0.839315 0.543646i \(-0.182957\pi\)
0.839315 + 0.543646i \(0.182957\pi\)
\(420\) 4.00000 0.195180
\(421\) 35.8885 1.74910 0.874550 0.484935i \(-0.161157\pi\)
0.874550 + 0.484935i \(0.161157\pi\)
\(422\) −16.9443 −0.824834
\(423\) 16.5410 0.804252
\(424\) 6.00000 0.291386
\(425\) −15.1246 −0.733651
\(426\) −8.00000 −0.387601
\(427\) 1.70820 0.0826658
\(428\) −1.52786 −0.0738521
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 20.9443 1.00885 0.504425 0.863455i \(-0.331704\pi\)
0.504425 + 0.863455i \(0.331704\pi\)
\(432\) −5.52786 −0.265959
\(433\) 6.76393 0.325054 0.162527 0.986704i \(-0.448036\pi\)
0.162527 + 0.986704i \(0.448036\pi\)
\(434\) 3.23607 0.155336
\(435\) 8.00000 0.383571
\(436\) 12.4721 0.597307
\(437\) −4.47214 −0.213931
\(438\) −16.5836 −0.792395
\(439\) −8.76393 −0.418280 −0.209140 0.977886i \(-0.567066\pi\)
−0.209140 + 0.977886i \(0.567066\pi\)
\(440\) 0 0
\(441\) −1.47214 −0.0701017
\(442\) −17.8885 −0.850871
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 7.41641 0.351967
\(445\) −20.0000 −0.948091
\(446\) 10.6525 0.504409
\(447\) 26.4721 1.25209
\(448\) −1.00000 −0.0472456
\(449\) 9.41641 0.444388 0.222194 0.975003i \(-0.428678\pi\)
0.222194 + 0.975003i \(0.428678\pi\)
\(450\) 8.05573 0.379751
\(451\) 0 0
\(452\) 12.4721 0.586640
\(453\) −11.7771 −0.553336
\(454\) 21.4164 1.00512
\(455\) −20.9443 −0.981883
\(456\) −5.52786 −0.258866
\(457\) 22.3607 1.04599 0.522994 0.852336i \(-0.324815\pi\)
0.522994 + 0.852336i \(0.324815\pi\)
\(458\) 15.2361 0.711935
\(459\) 15.2786 0.713146
\(460\) 3.23607 0.150882
\(461\) 3.05573 0.142319 0.0711597 0.997465i \(-0.477330\pi\)
0.0711597 + 0.997465i \(0.477330\pi\)
\(462\) 0 0
\(463\) −11.0557 −0.513803 −0.256902 0.966438i \(-0.582702\pi\)
−0.256902 + 0.966438i \(0.582702\pi\)
\(464\) −2.00000 −0.0928477
\(465\) −12.9443 −0.600276
\(466\) 16.4721 0.763057
\(467\) −11.5279 −0.533446 −0.266723 0.963773i \(-0.585941\pi\)
−0.266723 + 0.963773i \(0.585941\pi\)
\(468\) 9.52786 0.440426
\(469\) −4.00000 −0.184703
\(470\) −36.3607 −1.67719
\(471\) −23.0557 −1.06235
\(472\) −6.76393 −0.311335
\(473\) 0 0
\(474\) 11.0557 0.507806
\(475\) 24.4721 1.12286
\(476\) 2.76393 0.126685
\(477\) 8.83282 0.404427
\(478\) −6.47214 −0.296029
\(479\) −34.8328 −1.59155 −0.795776 0.605591i \(-0.792937\pi\)
−0.795776 + 0.605591i \(0.792937\pi\)
\(480\) 4.00000 0.182574
\(481\) −38.8328 −1.77062
\(482\) −0.291796 −0.0132909
\(483\) 1.23607 0.0562430
\(484\) −11.0000 −0.500000
\(485\) 45.8885 2.08369
\(486\) −13.5967 −0.616761
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 1.70820 0.0773268
\(489\) −8.00000 −0.361773
\(490\) 3.23607 0.146191
\(491\) −7.05573 −0.318421 −0.159210 0.987245i \(-0.550895\pi\)
−0.159210 + 0.987245i \(0.550895\pi\)
\(492\) −12.3607 −0.557262
\(493\) 5.52786 0.248962
\(494\) 28.9443 1.30226
\(495\) 0 0
\(496\) 3.23607 0.145304
\(497\) −6.47214 −0.290315
\(498\) −13.5279 −0.606198
\(499\) −8.94427 −0.400401 −0.200200 0.979755i \(-0.564159\pi\)
−0.200200 + 0.979755i \(0.564159\pi\)
\(500\) −1.52786 −0.0683282
\(501\) −8.22291 −0.367373
\(502\) 4.47214 0.199601
\(503\) −4.94427 −0.220454 −0.110227 0.993906i \(-0.535158\pi\)
−0.110227 + 0.993906i \(0.535158\pi\)
\(504\) −1.47214 −0.0655741
\(505\) 17.8885 0.796030
\(506\) 0 0
\(507\) 35.7082 1.58586
\(508\) −19.4164 −0.861464
\(509\) 33.8885 1.50208 0.751042 0.660255i \(-0.229552\pi\)
0.751042 + 0.660255i \(0.229552\pi\)
\(510\) −11.0557 −0.489556
\(511\) −13.4164 −0.593507
\(512\) −1.00000 −0.0441942
\(513\) −24.7214 −1.09147
\(514\) 26.9443 1.18846
\(515\) 12.9443 0.570393
\(516\) 3.05573 0.134521
\(517\) 0 0
\(518\) 6.00000 0.263625
\(519\) 3.77709 0.165796
\(520\) −20.9443 −0.918467
\(521\) 11.7082 0.512946 0.256473 0.966551i \(-0.417440\pi\)
0.256473 + 0.966551i \(0.417440\pi\)
\(522\) −2.94427 −0.128867
\(523\) 10.5836 0.462788 0.231394 0.972860i \(-0.425671\pi\)
0.231394 + 0.972860i \(0.425671\pi\)
\(524\) −17.2361 −0.752961
\(525\) −6.76393 −0.295202
\(526\) −12.0000 −0.523225
\(527\) −8.94427 −0.389619
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −19.4164 −0.843395
\(531\) −9.95743 −0.432116
\(532\) −4.47214 −0.193892
\(533\) 64.7214 2.80339
\(534\) −7.63932 −0.330586
\(535\) 4.94427 0.213760
\(536\) −4.00000 −0.172774
\(537\) 20.9443 0.903812
\(538\) −3.05573 −0.131742
\(539\) 0 0
\(540\) 17.8885 0.769800
\(541\) 3.88854 0.167182 0.0835908 0.996500i \(-0.473361\pi\)
0.0835908 + 0.996500i \(0.473361\pi\)
\(542\) 15.2361 0.654445
\(543\) 10.8328 0.464881
\(544\) 2.76393 0.118503
\(545\) −40.3607 −1.72886
\(546\) −8.00000 −0.342368
\(547\) −22.4721 −0.960839 −0.480420 0.877039i \(-0.659516\pi\)
−0.480420 + 0.877039i \(0.659516\pi\)
\(548\) −9.41641 −0.402249
\(549\) 2.51471 0.107325
\(550\) 0 0
\(551\) −8.94427 −0.381039
\(552\) 1.23607 0.0526105
\(553\) 8.94427 0.380349
\(554\) −19.8885 −0.844983
\(555\) −24.0000 −1.01874
\(556\) −23.1246 −0.980702
\(557\) −17.4164 −0.737957 −0.368978 0.929438i \(-0.620292\pi\)
−0.368978 + 0.929438i \(0.620292\pi\)
\(558\) 4.76393 0.201673
\(559\) −16.0000 −0.676728
\(560\) 3.23607 0.136749
\(561\) 0 0
\(562\) −5.41641 −0.228477
\(563\) 6.58359 0.277465 0.138733 0.990330i \(-0.455697\pi\)
0.138733 + 0.990330i \(0.455697\pi\)
\(564\) −13.8885 −0.584813
\(565\) −40.3607 −1.69799
\(566\) −4.47214 −0.187978
\(567\) 2.41641 0.101480
\(568\) −6.47214 −0.271565
\(569\) −2.00000 −0.0838444 −0.0419222 0.999121i \(-0.513348\pi\)
−0.0419222 + 0.999121i \(0.513348\pi\)
\(570\) 17.8885 0.749269
\(571\) −33.3050 −1.39377 −0.696884 0.717183i \(-0.745431\pi\)
−0.696884 + 0.717183i \(0.745431\pi\)
\(572\) 0 0
\(573\) 3.77709 0.157790
\(574\) −10.0000 −0.417392
\(575\) −5.47214 −0.228204
\(576\) −1.47214 −0.0613390
\(577\) −25.4164 −1.05810 −0.529049 0.848591i \(-0.677451\pi\)
−0.529049 + 0.848591i \(0.677451\pi\)
\(578\) 9.36068 0.389353
\(579\) −6.24922 −0.259709
\(580\) 6.47214 0.268741
\(581\) −10.9443 −0.454045
\(582\) 17.5279 0.726553
\(583\) 0 0
\(584\) −13.4164 −0.555175
\(585\) −30.8328 −1.27478
\(586\) 29.1246 1.20313
\(587\) 39.7082 1.63893 0.819466 0.573127i \(-0.194270\pi\)
0.819466 + 0.573127i \(0.194270\pi\)
\(588\) 1.23607 0.0509746
\(589\) 14.4721 0.596314
\(590\) 21.8885 0.901137
\(591\) −24.5836 −1.01123
\(592\) 6.00000 0.246598
\(593\) −38.0000 −1.56047 −0.780236 0.625485i \(-0.784901\pi\)
−0.780236 + 0.625485i \(0.784901\pi\)
\(594\) 0 0
\(595\) −8.94427 −0.366679
\(596\) 21.4164 0.877250
\(597\) −14.8328 −0.607067
\(598\) −6.47214 −0.264665
\(599\) 38.8328 1.58667 0.793333 0.608788i \(-0.208344\pi\)
0.793333 + 0.608788i \(0.208344\pi\)
\(600\) −6.76393 −0.276136
\(601\) −4.47214 −0.182422 −0.0912111 0.995832i \(-0.529074\pi\)
−0.0912111 + 0.995832i \(0.529074\pi\)
\(602\) 2.47214 0.100757
\(603\) −5.88854 −0.239800
\(604\) −9.52786 −0.387683
\(605\) 35.5967 1.44721
\(606\) 6.83282 0.277564
\(607\) 0.763932 0.0310070 0.0155035 0.999880i \(-0.495065\pi\)
0.0155035 + 0.999880i \(0.495065\pi\)
\(608\) −4.47214 −0.181369
\(609\) 2.47214 0.100176
\(610\) −5.52786 −0.223817
\(611\) 72.7214 2.94199
\(612\) 4.06888 0.164475
\(613\) −36.2492 −1.46409 −0.732046 0.681255i \(-0.761434\pi\)
−0.732046 + 0.681255i \(0.761434\pi\)
\(614\) −29.2361 −1.17987
\(615\) 40.0000 1.61296
\(616\) 0 0
\(617\) 9.05573 0.364570 0.182285 0.983246i \(-0.441651\pi\)
0.182285 + 0.983246i \(0.441651\pi\)
\(618\) 4.94427 0.198888
\(619\) 1.05573 0.0424333 0.0212166 0.999775i \(-0.493246\pi\)
0.0212166 + 0.999775i \(0.493246\pi\)
\(620\) −10.4721 −0.420571
\(621\) 5.52786 0.221826
\(622\) −25.1246 −1.00741
\(623\) −6.18034 −0.247610
\(624\) −8.00000 −0.320256
\(625\) −22.4164 −0.896656
\(626\) −26.1803 −1.04638
\(627\) 0 0
\(628\) −18.6525 −0.744315
\(629\) −16.5836 −0.661231
\(630\) 4.76393 0.189800
\(631\) −2.11146 −0.0840557 −0.0420279 0.999116i \(-0.513382\pi\)
−0.0420279 + 0.999116i \(0.513382\pi\)
\(632\) 8.94427 0.355784
\(633\) 20.9443 0.832460
\(634\) −10.0000 −0.397151
\(635\) 62.8328 2.49344
\(636\) −7.41641 −0.294080
\(637\) −6.47214 −0.256435
\(638\) 0 0
\(639\) −9.52786 −0.376916
\(640\) 3.23607 0.127917
\(641\) 34.9443 1.38022 0.690108 0.723707i \(-0.257563\pi\)
0.690108 + 0.723707i \(0.257563\pi\)
\(642\) 1.88854 0.0745349
\(643\) 44.2492 1.74502 0.872510 0.488597i \(-0.162491\pi\)
0.872510 + 0.488597i \(0.162491\pi\)
\(644\) 1.00000 0.0394055
\(645\) −9.88854 −0.389361
\(646\) 12.3607 0.486324
\(647\) 1.34752 0.0529766 0.0264883 0.999649i \(-0.491568\pi\)
0.0264883 + 0.999649i \(0.491568\pi\)
\(648\) 2.41641 0.0949255
\(649\) 0 0
\(650\) 35.4164 1.38915
\(651\) −4.00000 −0.156772
\(652\) −6.47214 −0.253468
\(653\) 29.7771 1.16527 0.582634 0.812735i \(-0.302022\pi\)
0.582634 + 0.812735i \(0.302022\pi\)
\(654\) −15.4164 −0.602829
\(655\) 55.7771 2.17939
\(656\) −10.0000 −0.390434
\(657\) −19.7508 −0.770551
\(658\) −11.2361 −0.438028
\(659\) −46.2492 −1.80161 −0.900807 0.434220i \(-0.857024\pi\)
−0.900807 + 0.434220i \(0.857024\pi\)
\(660\) 0 0
\(661\) 5.12461 0.199324 0.0996621 0.995021i \(-0.468224\pi\)
0.0996621 + 0.995021i \(0.468224\pi\)
\(662\) 30.4721 1.18433
\(663\) 22.1115 0.858738
\(664\) −10.9443 −0.424720
\(665\) 14.4721 0.561205
\(666\) 8.83282 0.342265
\(667\) 2.00000 0.0774403
\(668\) −6.65248 −0.257392
\(669\) −13.1672 −0.509073
\(670\) 12.9443 0.500081
\(671\) 0 0
\(672\) 1.23607 0.0476824
\(673\) −29.4164 −1.13392 −0.566960 0.823746i \(-0.691880\pi\)
−0.566960 + 0.823746i \(0.691880\pi\)
\(674\) 35.8885 1.38238
\(675\) −30.2492 −1.16429
\(676\) 28.8885 1.11110
\(677\) 23.2361 0.893035 0.446517 0.894775i \(-0.352664\pi\)
0.446517 + 0.894775i \(0.352664\pi\)
\(678\) −15.4164 −0.592064
\(679\) 14.1803 0.544191
\(680\) −8.94427 −0.342997
\(681\) −26.4721 −1.01441
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) −6.58359 −0.251730
\(685\) 30.4721 1.16428
\(686\) 1.00000 0.0381802
\(687\) −18.8328 −0.718517
\(688\) 2.47214 0.0942493
\(689\) 38.8328 1.47941
\(690\) −4.00000 −0.152277
\(691\) 49.0132 1.86455 0.932274 0.361753i \(-0.117821\pi\)
0.932274 + 0.361753i \(0.117821\pi\)
\(692\) 3.05573 0.116161
\(693\) 0 0
\(694\) −24.3607 −0.924719
\(695\) 74.8328 2.83857
\(696\) 2.47214 0.0937061
\(697\) 27.6393 1.04691
\(698\) 3.05573 0.115661
\(699\) −20.3607 −0.770112
\(700\) −5.47214 −0.206827
\(701\) −21.0557 −0.795264 −0.397632 0.917545i \(-0.630168\pi\)
−0.397632 + 0.917545i \(0.630168\pi\)
\(702\) −35.7771 −1.35032
\(703\) 26.8328 1.01202
\(704\) 0 0
\(705\) 44.9443 1.69270
\(706\) −0.472136 −0.0177691
\(707\) 5.52786 0.207897
\(708\) 8.36068 0.314214
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 20.9443 0.786025
\(711\) 13.1672 0.493808
\(712\) −6.18034 −0.231618
\(713\) −3.23607 −0.121192
\(714\) −3.41641 −0.127856
\(715\) 0 0
\(716\) 16.9443 0.633237
\(717\) 8.00000 0.298765
\(718\) −12.0000 −0.447836
\(719\) −32.5410 −1.21358 −0.606788 0.794864i \(-0.707542\pi\)
−0.606788 + 0.794864i \(0.707542\pi\)
\(720\) 4.76393 0.177541
\(721\) 4.00000 0.148968
\(722\) −1.00000 −0.0372161
\(723\) 0.360680 0.0134138
\(724\) 8.76393 0.325709
\(725\) −10.9443 −0.406460
\(726\) 13.5967 0.504623
\(727\) 7.05573 0.261682 0.130841 0.991403i \(-0.458232\pi\)
0.130841 + 0.991403i \(0.458232\pi\)
\(728\) −6.47214 −0.239873
\(729\) 24.0557 0.890953
\(730\) 43.4164 1.60691
\(731\) −6.83282 −0.252721
\(732\) −2.11146 −0.0780417
\(733\) 3.59675 0.132849 0.0664245 0.997791i \(-0.478841\pi\)
0.0664245 + 0.997791i \(0.478841\pi\)
\(734\) −24.3607 −0.899169
\(735\) −4.00000 −0.147542
\(736\) 1.00000 0.0368605
\(737\) 0 0
\(738\) −14.7214 −0.541901
\(739\) 24.3607 0.896122 0.448061 0.894003i \(-0.352115\pi\)
0.448061 + 0.894003i \(0.352115\pi\)
\(740\) −19.4164 −0.713761
\(741\) −35.7771 −1.31430
\(742\) −6.00000 −0.220267
\(743\) −48.9443 −1.79559 −0.897796 0.440412i \(-0.854832\pi\)
−0.897796 + 0.440412i \(0.854832\pi\)
\(744\) −4.00000 −0.146647
\(745\) −69.3050 −2.53914
\(746\) 10.5836 0.387493
\(747\) −16.1115 −0.589487
\(748\) 0 0
\(749\) 1.52786 0.0558269
\(750\) 1.88854 0.0689599
\(751\) −40.9443 −1.49408 −0.747039 0.664780i \(-0.768525\pi\)
−0.747039 + 0.664780i \(0.768525\pi\)
\(752\) −11.2361 −0.409737
\(753\) −5.52786 −0.201447
\(754\) −12.9443 −0.471403
\(755\) 30.8328 1.12212
\(756\) 5.52786 0.201046
\(757\) 23.5279 0.855135 0.427567 0.903983i \(-0.359371\pi\)
0.427567 + 0.903983i \(0.359371\pi\)
\(758\) 17.8885 0.649741
\(759\) 0 0
\(760\) 14.4721 0.524960
\(761\) −0.472136 −0.0171149 −0.00855746 0.999963i \(-0.502724\pi\)
−0.00855746 + 0.999963i \(0.502724\pi\)
\(762\) 24.0000 0.869428
\(763\) −12.4721 −0.451522
\(764\) 3.05573 0.110552
\(765\) −13.1672 −0.476061
\(766\) 0.583592 0.0210860
\(767\) −43.7771 −1.58070
\(768\) 1.23607 0.0446028
\(769\) 21.2361 0.765792 0.382896 0.923791i \(-0.374927\pi\)
0.382896 + 0.923791i \(0.374927\pi\)
\(770\) 0 0
\(771\) −33.3050 −1.19945
\(772\) −5.05573 −0.181960
\(773\) 16.1803 0.581966 0.290983 0.956728i \(-0.406018\pi\)
0.290983 + 0.956728i \(0.406018\pi\)
\(774\) 3.63932 0.130813
\(775\) 17.7082 0.636097
\(776\) 14.1803 0.509045
\(777\) −7.41641 −0.266062
\(778\) −9.41641 −0.337595
\(779\) −44.7214 −1.60231
\(780\) 25.8885 0.926959
\(781\) 0 0
\(782\) −2.76393 −0.0988380
\(783\) 11.0557 0.395099
\(784\) 1.00000 0.0357143
\(785\) 60.3607 2.15437
\(786\) 21.3050 0.759922
\(787\) −35.8885 −1.27929 −0.639644 0.768671i \(-0.720918\pi\)
−0.639644 + 0.768671i \(0.720918\pi\)
\(788\) −19.8885 −0.708500
\(789\) 14.8328 0.528062
\(790\) −28.9443 −1.02979
\(791\) −12.4721 −0.443458
\(792\) 0 0
\(793\) 11.0557 0.392600
\(794\) −14.4721 −0.513597
\(795\) 24.0000 0.851192
\(796\) −12.0000 −0.425329
\(797\) −13.3475 −0.472794 −0.236397 0.971657i \(-0.575967\pi\)
−0.236397 + 0.971657i \(0.575967\pi\)
\(798\) 5.52786 0.195684
\(799\) 31.0557 1.09867
\(800\) −5.47214 −0.193469
\(801\) −9.09830 −0.321473
\(802\) 37.7771 1.33396
\(803\) 0 0
\(804\) 4.94427 0.174371
\(805\) −3.23607 −0.114056
\(806\) 20.9443 0.737731
\(807\) 3.77709 0.132960
\(808\) 5.52786 0.194470
\(809\) −32.8328 −1.15434 −0.577170 0.816624i \(-0.695843\pi\)
−0.577170 + 0.816624i \(0.695843\pi\)
\(810\) −7.81966 −0.274755
\(811\) 21.5967 0.758364 0.379182 0.925322i \(-0.376205\pi\)
0.379182 + 0.925322i \(0.376205\pi\)
\(812\) 2.00000 0.0701862
\(813\) −18.8328 −0.660496
\(814\) 0 0
\(815\) 20.9443 0.733646
\(816\) −3.41641 −0.119598
\(817\) 11.0557 0.386791
\(818\) −28.4721 −0.995505
\(819\) −9.52786 −0.332931
\(820\) 32.3607 1.13008
\(821\) −2.94427 −0.102756 −0.0513779 0.998679i \(-0.516361\pi\)
−0.0513779 + 0.998679i \(0.516361\pi\)
\(822\) 11.6393 0.405968
\(823\) −11.4164 −0.397951 −0.198975 0.980004i \(-0.563761\pi\)
−0.198975 + 0.980004i \(0.563761\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 6.76393 0.235347
\(827\) −12.5836 −0.437574 −0.218787 0.975773i \(-0.570210\pi\)
−0.218787 + 0.975773i \(0.570210\pi\)
\(828\) 1.47214 0.0511603
\(829\) 13.8885 0.482369 0.241185 0.970479i \(-0.422464\pi\)
0.241185 + 0.970479i \(0.422464\pi\)
\(830\) 35.4164 1.22932
\(831\) 24.5836 0.852795
\(832\) −6.47214 −0.224381
\(833\) −2.76393 −0.0957646
\(834\) 28.5836 0.989769
\(835\) 21.5279 0.745002
\(836\) 0 0
\(837\) −17.8885 −0.618319
\(838\) −34.3607 −1.18697
\(839\) 28.3607 0.979119 0.489560 0.871970i \(-0.337158\pi\)
0.489560 + 0.871970i \(0.337158\pi\)
\(840\) −4.00000 −0.138013
\(841\) −25.0000 −0.862069
\(842\) −35.8885 −1.23680
\(843\) 6.69505 0.230590
\(844\) 16.9443 0.583246
\(845\) −93.4853 −3.21599
\(846\) −16.5410 −0.568692
\(847\) 11.0000 0.377964
\(848\) −6.00000 −0.206041
\(849\) 5.52786 0.189716
\(850\) 15.1246 0.518770
\(851\) −6.00000 −0.205677
\(852\) 8.00000 0.274075
\(853\) 11.4164 0.390890 0.195445 0.980715i \(-0.437385\pi\)
0.195445 + 0.980715i \(0.437385\pi\)
\(854\) −1.70820 −0.0584535
\(855\) 21.3050 0.728614
\(856\) 1.52786 0.0522213
\(857\) −11.8885 −0.406105 −0.203052 0.979168i \(-0.565086\pi\)
−0.203052 + 0.979168i \(0.565086\pi\)
\(858\) 0 0
\(859\) 2.76393 0.0943041 0.0471521 0.998888i \(-0.484985\pi\)
0.0471521 + 0.998888i \(0.484985\pi\)
\(860\) −8.00000 −0.272798
\(861\) 12.3607 0.421251
\(862\) −20.9443 −0.713365
\(863\) −3.41641 −0.116296 −0.0581479 0.998308i \(-0.518520\pi\)
−0.0581479 + 0.998308i \(0.518520\pi\)
\(864\) 5.52786 0.188062
\(865\) −9.88854 −0.336221
\(866\) −6.76393 −0.229848
\(867\) −11.5704 −0.392953
\(868\) −3.23607 −0.109839
\(869\) 0 0
\(870\) −8.00000 −0.271225
\(871\) −25.8885 −0.877200
\(872\) −12.4721 −0.422360
\(873\) 20.8754 0.706525
\(874\) 4.47214 0.151272
\(875\) 1.52786 0.0516512
\(876\) 16.5836 0.560308
\(877\) 26.9443 0.909843 0.454922 0.890531i \(-0.349667\pi\)
0.454922 + 0.890531i \(0.349667\pi\)
\(878\) 8.76393 0.295768
\(879\) −36.0000 −1.21425
\(880\) 0 0
\(881\) −21.2361 −0.715461 −0.357731 0.933825i \(-0.616449\pi\)
−0.357731 + 0.933825i \(0.616449\pi\)
\(882\) 1.47214 0.0495694
\(883\) 12.0000 0.403832 0.201916 0.979403i \(-0.435283\pi\)
0.201916 + 0.979403i \(0.435283\pi\)
\(884\) 17.8885 0.601657
\(885\) −27.0557 −0.909468
\(886\) −4.00000 −0.134383
\(887\) −35.5967 −1.19522 −0.597611 0.801786i \(-0.703883\pi\)
−0.597611 + 0.801786i \(0.703883\pi\)
\(888\) −7.41641 −0.248878
\(889\) 19.4164 0.651205
\(890\) 20.0000 0.670402
\(891\) 0 0
\(892\) −10.6525 −0.356671
\(893\) −50.2492 −1.68153
\(894\) −26.4721 −0.885361
\(895\) −54.8328 −1.83286
\(896\) 1.00000 0.0334077
\(897\) 8.00000 0.267112
\(898\) −9.41641 −0.314230
\(899\) −6.47214 −0.215858
\(900\) −8.05573 −0.268524
\(901\) 16.5836 0.552480
\(902\) 0 0
\(903\) −3.05573 −0.101688
\(904\) −12.4721 −0.414817
\(905\) −28.3607 −0.942741
\(906\) 11.7771 0.391268
\(907\) −1.52786 −0.0507319 −0.0253659 0.999678i \(-0.508075\pi\)
−0.0253659 + 0.999678i \(0.508075\pi\)
\(908\) −21.4164 −0.710728
\(909\) 8.13777 0.269913
\(910\) 20.9443 0.694296
\(911\) 21.8885 0.725200 0.362600 0.931945i \(-0.381889\pi\)
0.362600 + 0.931945i \(0.381889\pi\)
\(912\) 5.52786 0.183046
\(913\) 0 0
\(914\) −22.3607 −0.739626
\(915\) 6.83282 0.225886
\(916\) −15.2361 −0.503414
\(917\) 17.2361 0.569185
\(918\) −15.2786 −0.504270
\(919\) −10.1115 −0.333546 −0.166773 0.985995i \(-0.553335\pi\)
−0.166773 + 0.985995i \(0.553335\pi\)
\(920\) −3.23607 −0.106690
\(921\) 36.1378 1.19078
\(922\) −3.05573 −0.100635
\(923\) −41.8885 −1.37878
\(924\) 0 0
\(925\) 32.8328 1.07954
\(926\) 11.0557 0.363314
\(927\) 5.88854 0.193405
\(928\) 2.00000 0.0656532
\(929\) −34.0000 −1.11550 −0.557752 0.830008i \(-0.688336\pi\)
−0.557752 + 0.830008i \(0.688336\pi\)
\(930\) 12.9443 0.424459
\(931\) 4.47214 0.146568
\(932\) −16.4721 −0.539563
\(933\) 31.0557 1.01672
\(934\) 11.5279 0.377203
\(935\) 0 0
\(936\) −9.52786 −0.311428
\(937\) 50.7639 1.65839 0.829193 0.558963i \(-0.188801\pi\)
0.829193 + 0.558963i \(0.188801\pi\)
\(938\) 4.00000 0.130605
\(939\) 32.3607 1.05605
\(940\) 36.3607 1.18595
\(941\) 19.5967 0.638836 0.319418 0.947614i \(-0.396513\pi\)
0.319418 + 0.947614i \(0.396513\pi\)
\(942\) 23.0557 0.751196
\(943\) 10.0000 0.325645
\(944\) 6.76393 0.220147
\(945\) −17.8885 −0.581914
\(946\) 0 0
\(947\) 42.2492 1.37292 0.686458 0.727170i \(-0.259165\pi\)
0.686458 + 0.727170i \(0.259165\pi\)
\(948\) −11.0557 −0.359073
\(949\) −86.8328 −2.81871
\(950\) −24.4721 −0.793981
\(951\) 12.3607 0.400823
\(952\) −2.76393 −0.0895796
\(953\) 45.7771 1.48287 0.741433 0.671027i \(-0.234147\pi\)
0.741433 + 0.671027i \(0.234147\pi\)
\(954\) −8.83282 −0.285973
\(955\) −9.88854 −0.319986
\(956\) 6.47214 0.209324
\(957\) 0 0
\(958\) 34.8328 1.12540
\(959\) 9.41641 0.304072
\(960\) −4.00000 −0.129099
\(961\) −20.5279 −0.662189
\(962\) 38.8328 1.25202
\(963\) 2.24922 0.0724802
\(964\) 0.291796 0.00939812
\(965\) 16.3607 0.526669
\(966\) −1.23607 −0.0397698
\(967\) −9.88854 −0.317994 −0.158997 0.987279i \(-0.550826\pi\)
−0.158997 + 0.987279i \(0.550826\pi\)
\(968\) 11.0000 0.353553
\(969\) −15.2786 −0.490821
\(970\) −45.8885 −1.47339
\(971\) −35.8885 −1.15172 −0.575859 0.817549i \(-0.695332\pi\)
−0.575859 + 0.817549i \(0.695332\pi\)
\(972\) 13.5967 0.436116
\(973\) 23.1246 0.741341
\(974\) 0 0
\(975\) −43.7771 −1.40199
\(976\) −1.70820 −0.0546783
\(977\) −12.4721 −0.399019 −0.199509 0.979896i \(-0.563935\pi\)
−0.199509 + 0.979896i \(0.563935\pi\)
\(978\) 8.00000 0.255812
\(979\) 0 0
\(980\) −3.23607 −0.103372
\(981\) −18.3607 −0.586211
\(982\) 7.05573 0.225157
\(983\) −13.5279 −0.431472 −0.215736 0.976452i \(-0.569215\pi\)
−0.215736 + 0.976452i \(0.569215\pi\)
\(984\) 12.3607 0.394044
\(985\) 64.3607 2.05070
\(986\) −5.52786 −0.176043
\(987\) 13.8885 0.442077
\(988\) −28.9443 −0.920840
\(989\) −2.47214 −0.0786094
\(990\) 0 0
\(991\) 21.3050 0.676774 0.338387 0.941007i \(-0.390119\pi\)
0.338387 + 0.941007i \(0.390119\pi\)
\(992\) −3.23607 −0.102745
\(993\) −37.6656 −1.19528
\(994\) 6.47214 0.205284
\(995\) 38.8328 1.23108
\(996\) 13.5279 0.428647
\(997\) 10.8328 0.343079 0.171539 0.985177i \(-0.445126\pi\)
0.171539 + 0.985177i \(0.445126\pi\)
\(998\) 8.94427 0.283126
\(999\) −33.1672 −1.04936
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 322.2.a.e.1.2 2
3.2 odd 2 2898.2.a.bd.1.2 2
4.3 odd 2 2576.2.a.t.1.1 2
5.4 even 2 8050.2.a.bf.1.1 2
7.6 odd 2 2254.2.a.k.1.1 2
23.22 odd 2 7406.2.a.j.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.2.a.e.1.2 2 1.1 even 1 trivial
2254.2.a.k.1.1 2 7.6 odd 2
2576.2.a.t.1.1 2 4.3 odd 2
2898.2.a.bd.1.2 2 3.2 odd 2
7406.2.a.j.1.2 2 23.22 odd 2
8050.2.a.bf.1.1 2 5.4 even 2