Properties

 Label 3200.2.f.p Level $3200$ Weight $2$ Character orbit 3200.f Analytic conductor $25.552$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$3200 = 2^{7} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3200.f (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$25.5521286468$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{10})$$ Defining polynomial: $$x^{4} + 25$$ x^4 + 25 Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 640) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{3} q^{3} - \beta_{2} q^{7} + 7 q^{9}+O(q^{10})$$ q + b3 * q^3 - b2 * q^7 + 7 * q^9 $$q + \beta_{3} q^{3} - \beta_{2} q^{7} + 7 q^{9} - 6 q^{13} - \beta_1 q^{17} - 2 \beta_{2} q^{19} - 5 \beta_1 q^{21} + \beta_{2} q^{23} + 4 \beta_{3} q^{27} - 2 \beta_1 q^{29} + 2 \beta_{3} q^{31} - 2 q^{37} - 6 \beta_{3} q^{39} + \beta_{3} q^{43} - 3 \beta_{2} q^{47} - 3 q^{49} - 2 \beta_{2} q^{51} + 6 q^{53} - 10 \beta_1 q^{57} - 2 \beta_{2} q^{59} - \beta_1 q^{61} - 7 \beta_{2} q^{63} + 3 \beta_{3} q^{67} + 5 \beta_1 q^{69} - 2 \beta_{3} q^{71} + 7 \beta_1 q^{73} + 4 \beta_{3} q^{79} + 19 q^{81} - \beta_{3} q^{83} - 4 \beta_{2} q^{87} - 10 q^{89} + 6 \beta_{2} q^{91} + 20 q^{93} + \beta_1 q^{97}+O(q^{100})$$ q + b3 * q^3 - b2 * q^7 + 7 * q^9 - 6 * q^13 - b1 * q^17 - 2*b2 * q^19 - 5*b1 * q^21 + b2 * q^23 + 4*b3 * q^27 - 2*b1 * q^29 + 2*b3 * q^31 - 2 * q^37 - 6*b3 * q^39 + b3 * q^43 - 3*b2 * q^47 - 3 * q^49 - 2*b2 * q^51 + 6 * q^53 - 10*b1 * q^57 - 2*b2 * q^59 - b1 * q^61 - 7*b2 * q^63 + 3*b3 * q^67 + 5*b1 * q^69 - 2*b3 * q^71 + 7*b1 * q^73 + 4*b3 * q^79 + 19 * q^81 - b3 * q^83 - 4*b2 * q^87 - 10 * q^89 + 6*b2 * q^91 + 20 * q^93 + b1 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 28 q^{9}+O(q^{10})$$ 4 * q + 28 * q^9 $$4 q + 28 q^{9} - 24 q^{13} - 8 q^{37} - 12 q^{49} + 24 q^{53} + 76 q^{81} - 40 q^{89} + 80 q^{93}+O(q^{100})$$ 4 * q + 28 * q^9 - 24 * q^13 - 8 * q^37 - 12 * q^49 + 24 * q^53 + 76 * q^81 - 40 * q^89 + 80 * q^93

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 25$$ :

 $$\beta_{1}$$ $$=$$ $$( 2\nu^{2} ) / 5$$ (2*v^2) / 5 $$\beta_{2}$$ $$=$$ $$( \nu^{3} + 5\nu ) / 5$$ (v^3 + 5*v) / 5 $$\beta_{3}$$ $$=$$ $$( -\nu^{3} + 5\nu ) / 5$$ (-v^3 + 5*v) / 5
 $$\nu$$ $$=$$ $$( \beta_{3} + \beta_{2} ) / 2$$ (b3 + b2) / 2 $$\nu^{2}$$ $$=$$ $$( 5\beta_1 ) / 2$$ (5*b1) / 2 $$\nu^{3}$$ $$=$$ $$( -5\beta_{3} + 5\beta_{2} ) / 2$$ (-5*b3 + 5*b2) / 2

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times$$.

 $$n$$ $$901$$ $$1151$$ $$2177$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 −1.58114 + 1.58114i −1.58114 − 1.58114i 1.58114 + 1.58114i 1.58114 − 1.58114i
0 −3.16228 0 0 0 3.16228i 0 7.00000 0
449.2 0 −3.16228 0 0 0 3.16228i 0 7.00000 0
449.3 0 3.16228 0 0 0 3.16228i 0 7.00000 0
449.4 0 3.16228 0 0 0 3.16228i 0 7.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
40.e odd 2 1 inner
40.f even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3200.2.f.p 4
4.b odd 2 1 inner 3200.2.f.p 4
5.b even 2 1 3200.2.f.q 4
5.c odd 4 1 640.2.d.a 4
5.c odd 4 1 3200.2.d.j 4
8.b even 2 1 3200.2.f.q 4
8.d odd 2 1 3200.2.f.q 4
15.e even 4 1 5760.2.k.t 4
20.d odd 2 1 3200.2.f.q 4
20.e even 4 1 640.2.d.a 4
20.e even 4 1 3200.2.d.j 4
40.e odd 2 1 inner 3200.2.f.p 4
40.f even 2 1 inner 3200.2.f.p 4
40.i odd 4 1 640.2.d.a 4
40.i odd 4 1 3200.2.d.j 4
40.k even 4 1 640.2.d.a 4
40.k even 4 1 3200.2.d.j 4
60.l odd 4 1 5760.2.k.t 4
80.i odd 4 1 1280.2.a.l 2
80.i odd 4 1 6400.2.a.ca 2
80.j even 4 1 1280.2.a.h 2
80.j even 4 1 6400.2.a.bz 2
80.s even 4 1 1280.2.a.l 2
80.s even 4 1 6400.2.a.ca 2
80.t odd 4 1 1280.2.a.h 2
80.t odd 4 1 6400.2.a.bz 2
120.q odd 4 1 5760.2.k.t 4
120.w even 4 1 5760.2.k.t 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.2.d.a 4 5.c odd 4 1
640.2.d.a 4 20.e even 4 1
640.2.d.a 4 40.i odd 4 1
640.2.d.a 4 40.k even 4 1
1280.2.a.h 2 80.j even 4 1
1280.2.a.h 2 80.t odd 4 1
1280.2.a.l 2 80.i odd 4 1
1280.2.a.l 2 80.s even 4 1
3200.2.d.j 4 5.c odd 4 1
3200.2.d.j 4 20.e even 4 1
3200.2.d.j 4 40.i odd 4 1
3200.2.d.j 4 40.k even 4 1
3200.2.f.p 4 1.a even 1 1 trivial
3200.2.f.p 4 4.b odd 2 1 inner
3200.2.f.p 4 40.e odd 2 1 inner
3200.2.f.p 4 40.f even 2 1 inner
3200.2.f.q 4 5.b even 2 1
3200.2.f.q 4 8.b even 2 1
3200.2.f.q 4 8.d odd 2 1
3200.2.f.q 4 20.d odd 2 1
5760.2.k.t 4 15.e even 4 1
5760.2.k.t 4 60.l odd 4 1
5760.2.k.t 4 120.q odd 4 1
5760.2.k.t 4 120.w even 4 1
6400.2.a.bz 2 80.j even 4 1
6400.2.a.bz 2 80.t odd 4 1
6400.2.a.ca 2 80.i odd 4 1
6400.2.a.ca 2 80.s even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3200, [\chi])$$:

 $$T_{3}^{2} - 10$$ T3^2 - 10 $$T_{7}^{2} + 10$$ T7^2 + 10 $$T_{11}$$ T11 $$T_{13} + 6$$ T13 + 6 $$T_{31}^{2} - 40$$ T31^2 - 40

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$(T^{2} - 10)^{2}$$
$5$ $$T^{4}$$
$7$ $$(T^{2} + 10)^{2}$$
$11$ $$T^{4}$$
$13$ $$(T + 6)^{4}$$
$17$ $$(T^{2} + 4)^{2}$$
$19$ $$(T^{2} + 40)^{2}$$
$23$ $$(T^{2} + 10)^{2}$$
$29$ $$(T^{2} + 16)^{2}$$
$31$ $$(T^{2} - 40)^{2}$$
$37$ $$(T + 2)^{4}$$
$41$ $$T^{4}$$
$43$ $$(T^{2} - 10)^{2}$$
$47$ $$(T^{2} + 90)^{2}$$
$53$ $$(T - 6)^{4}$$
$59$ $$(T^{2} + 40)^{2}$$
$61$ $$(T^{2} + 4)^{2}$$
$67$ $$(T^{2} - 90)^{2}$$
$71$ $$(T^{2} - 40)^{2}$$
$73$ $$(T^{2} + 196)^{2}$$
$79$ $$(T^{2} - 160)^{2}$$
$83$ $$(T^{2} - 10)^{2}$$
$89$ $$(T + 10)^{4}$$
$97$ $$(T^{2} + 4)^{2}$$