Properties

Label 3200.2.f
Level $3200$
Weight $2$
Character orbit 3200.f
Rep. character $\chi_{3200}(449,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $19$
Sturm bound $960$
Trace bound $49$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(960\)
Trace bound: \(49\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\), \(31\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3200, [\chi])\).

Total New Old
Modular forms 528 72 456
Cusp forms 432 72 360
Eisenstein series 96 0 96

Trace form

\( 72q + 72q^{9} + O(q^{10}) \) \( 72q + 72q^{9} - 16q^{41} - 72q^{49} + 8q^{81} - 16q^{89} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3200, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3200.2.f.a \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) None \(0\) \(-2\) \(0\) \(0\) \(q-q^{3}+4iq^{7}-2q^{9}+3iq^{11}-iq^{17}+\cdots\)
3200.2.f.b \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) None \(0\) \(-2\) \(0\) \(0\) \(q-q^{3}-4iq^{7}-2q^{9}+3iq^{11}-iq^{17}+\cdots\)
3200.2.f.c \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) \(0\) \(0\) \(0\) \(0\) \(q-3q^{9}-4q^{13}+iq^{17}-2iq^{29}+\cdots\)
3200.2.f.d \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) \(0\) \(0\) \(0\) \(0\) \(q-3q^{9}+4q^{13}+iq^{17}+2iq^{29}+\cdots\)
3200.2.f.e \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) None \(0\) \(2\) \(0\) \(0\) \(q+q^{3}+4iq^{7}-2q^{9}-3iq^{11}-iq^{17}+\cdots\)
3200.2.f.f \(2\) \(25.552\) \(\Q(\sqrt{-1}) \) None \(0\) \(2\) \(0\) \(0\) \(q+q^{3}+4iq^{7}-2q^{9}+3iq^{11}+iq^{17}+\cdots\)
3200.2.f.g \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{3}q^{3}-3\zeta_{8}^{2}q^{7}-q^{9}+2\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.h \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{3}q^{3}+\zeta_{8}^{2}q^{7}-q^{9}+2\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.i \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{3}q^{3}-3\zeta_{8}^{2}q^{7}-q^{9}-4\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.j \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{3}q^{3}+3\zeta_{8}^{2}q^{7}-q^{9}-4\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.k \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{3}q^{3}+\zeta_{8}^{2}q^{7}-q^{9}-2\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.l \(4\) \(25.552\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{8}^{3}q^{3}-3\zeta_{8}^{2}q^{7}-q^{9}-2\zeta_{8}^{2}q^{11}+\cdots\)
3200.2.f.m \(4\) \(25.552\) \(\Q(i, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{3}+2q^{9}+\beta _{2}q^{11}-4q^{13}+\cdots\)
3200.2.f.n \(4\) \(25.552\) \(\Q(i, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{3}+2q^{9}-\beta _{2}q^{11}+4q^{13}+\cdots\)
3200.2.f.o \(4\) \(25.552\) \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{3}q^{3}+5q^{9}-\zeta_{8}^{2}q^{11}-3\zeta_{8}q^{17}+\cdots\)
3200.2.f.p \(4\) \(25.552\) \(\Q(i, \sqrt{10})\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{3}-\beta _{2}q^{7}+7q^{9}-6q^{13}-\beta _{1}q^{17}+\cdots\)
3200.2.f.q \(4\) \(25.552\) \(\Q(i, \sqrt{10})\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{3}+\beta _{2}q^{7}+7q^{9}+6q^{13}-\beta _{1}q^{17}+\cdots\)
3200.2.f.r \(8\) \(25.552\) 8.0.40960000.1 None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{3}-\beta _{2}q^{7}+2q^{9}+\beta _{3}q^{11}+\cdots\)
3200.2.f.s \(8\) \(25.552\) \(\Q(\zeta_{24})\) \(\Q(\sqrt{-2}) \) \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{24}q^{3}+(2-\zeta_{24}^{3})q^{9}+\zeta_{24}^{6}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3200, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3200, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(640, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1600, [\chi])\)\(^{\oplus 2}\)