Properties

Label 3200.2.d.n.1601.1
Level $3200$
Weight $2$
Character 3200.1601
Analytic conductor $25.552$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3200,2,Mod(1601,3200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3200.1601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.5521286468\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1601.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 3200.1601
Dual form 3200.2.d.n.1601.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.14626i q^{3} -6.89898 q^{9} +O(q^{10})\) \(q-3.14626i q^{3} -6.89898 q^{9} -6.61037i q^{11} -7.89898 q^{17} +2.51059i q^{19} +12.2672i q^{27} -20.7980 q^{33} +12.7980 q^{41} -8.48528i q^{43} -7.00000 q^{49} +24.8523i q^{51} +7.89898 q^{57} +14.1421i q^{59} -7.88171i q^{67} -13.6969 q^{73} +17.8990 q^{81} +14.1742i q^{83} +13.8990 q^{89} -10.0000 q^{97} +45.6048i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{9} - 12 q^{17} - 44 q^{33} + 12 q^{41} - 28 q^{49} + 12 q^{57} + 4 q^{73} + 52 q^{81} + 36 q^{89} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1151\) \(2177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.14626i − 1.81650i −0.418432 0.908248i \(-0.637420\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −6.89898 −2.29966
\(10\) 0 0
\(11\) − 6.61037i − 1.99310i −0.0829925 0.996550i \(-0.526448\pi\)
0.0829925 0.996550i \(-0.473552\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.89898 −1.91578 −0.957892 0.287129i \(-0.907299\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) 2.51059i 0.575969i 0.957635 + 0.287984i \(0.0929851\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 12.2672i 2.36083i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −20.7980 −3.62046
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.7980 1.99871 0.999353 0.0359748i \(-0.0114536\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) − 8.48528i − 1.29399i −0.762493 0.646997i \(-0.776025\pi\)
0.762493 0.646997i \(-0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 24.8523i 3.48001i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.89898 1.04625
\(58\) 0 0
\(59\) 14.1421i 1.84115i 0.390567 + 0.920575i \(0.372279\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.88171i − 0.962905i −0.876472 0.481452i \(-0.840109\pi\)
0.876472 0.481452i \(-0.159891\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −13.6969 −1.60311 −0.801553 0.597924i \(-0.795992\pi\)
−0.801553 + 0.597924i \(0.795992\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 17.8990 1.98878
\(82\) 0 0
\(83\) 14.1742i 1.55583i 0.628372 + 0.777913i \(0.283721\pi\)
−0.628372 + 0.777913i \(0.716279\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8990 1.47329 0.736644 0.676280i \(-0.236409\pi\)
0.736644 + 0.676280i \(0.236409\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 45.6048i 4.58345i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.70334i 0.454689i 0.973814 + 0.227345i \(0.0730044\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.797959 0.0750657 0.0375328 0.999295i \(-0.488050\pi\)
0.0375328 + 0.999295i \(0.488050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −32.6969 −2.97245
\(122\) 0 0
\(123\) − 40.2658i − 3.63064i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −26.6969 −2.35053
\(130\) 0 0
\(131\) 14.1421i 1.23560i 0.786334 + 0.617802i \(0.211977\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.5959 −1.41788 −0.708942 0.705266i \(-0.750827\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) − 14.8099i − 1.25616i −0.778148 0.628080i \(-0.783841\pi\)
0.778148 0.628080i \(-0.216159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 22.0239i 1.81650i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 54.4949 4.40565
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 10.9959i − 0.861263i −0.902528 0.430632i \(-0.858291\pi\)
0.902528 0.430632i \(-0.141709\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) − 17.3205i − 1.32453i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 44.4949 3.34444
\(178\) 0 0
\(179\) − 5.68896i − 0.425213i −0.977138 0.212607i \(-0.931805\pi\)
0.977138 0.212607i \(-0.0681952\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 52.2151i 3.81835i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 3.69694 0.266111 0.133056 0.991109i \(-0.457521\pi\)
0.133056 + 0.991109i \(0.457521\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −24.7980 −1.74911
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.5959 1.14796
\(210\) 0 0
\(211\) − 24.8523i − 1.71090i −0.517884 0.855451i \(-0.673280\pi\)
0.517884 0.855451i \(-0.326720\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 43.0942i 2.91204i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.82843i 0.187729i 0.995585 + 0.0938647i \(0.0299221\pi\)
−0.995585 + 0.0938647i \(0.970078\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.69694 −0.109309 −0.0546547 0.998505i \(-0.517406\pi\)
−0.0546547 + 0.998505i \(0.517406\pi\)
\(242\) 0 0
\(243\) − 19.5133i − 1.25178i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 44.5959 2.82615
\(250\) 0 0
\(251\) 20.7525i 1.30989i 0.755678 + 0.654943i \(0.227307\pi\)
−0.755678 + 0.654943i \(0.772693\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 43.7299i − 2.67622i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 6.32464i 0.375961i 0.982173 + 0.187980i \(0.0601941\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 45.3939 2.67023
\(290\) 0 0
\(291\) 31.4626i 1.84437i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 81.0908 4.70537
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 25.2022i − 1.43837i −0.694820 0.719183i \(-0.744516\pi\)
0.694820 0.719183i \(-0.255484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 14.7980 0.825942
\(322\) 0 0
\(323\) − 19.8311i − 1.10343i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.78874i 0.538038i 0.963135 + 0.269019i \(0.0866994\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.3939 −1.21987 −0.609936 0.792451i \(-0.708805\pi\)
−0.609936 + 0.792451i \(0.708805\pi\)
\(338\) 0 0
\(339\) − 2.51059i − 0.136357i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 23.5809i − 1.26589i −0.774197 0.632945i \(-0.781846\pi\)
0.774197 0.632945i \(-0.218154\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 12.6969 0.668260
\(362\) 0 0
\(363\) 102.873i 5.39944i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −88.2929 −4.59634
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 37.1516i 1.90835i 0.299249 + 0.954175i \(0.403264\pi\)
−0.299249 + 0.954175i \(0.596736\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 58.5398i 2.97574i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 44.4949 2.24447
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −37.2929 −1.86232 −0.931158 0.364615i \(-0.881200\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −18.3939 −0.909519 −0.454759 0.890614i \(-0.650275\pi\)
−0.454759 + 0.890614i \(0.650275\pi\)
\(410\) 0 0
\(411\) 52.2151i 2.57558i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −46.5959 −2.28181
\(418\) 0 0
\(419\) − 33.9732i − 1.65970i −0.557986 0.829851i \(-0.688426\pi\)
0.557986 0.829851i \(-0.311574\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −33.6969 −1.61937 −0.809686 0.586864i \(-0.800362\pi\)
−0.809686 + 0.586864i \(0.800362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 48.2929 2.29966
\(442\) 0 0
\(443\) − 37.7873i − 1.79533i −0.440681 0.897664i \(-0.645263\pi\)
0.440681 0.897664i \(-0.354737\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.1010 0.759854 0.379927 0.925016i \(-0.375949\pi\)
0.379927 + 0.925016i \(0.375949\pi\)
\(450\) 0 0
\(451\) − 84.5992i − 3.98362i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −42.3939 −1.98310 −0.991551 0.129718i \(-0.958593\pi\)
−0.991551 + 0.129718i \(0.958593\pi\)
\(458\) 0 0
\(459\) − 96.8985i − 4.52284i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 31.1127i − 1.43972i −0.694117 0.719862i \(-0.744205\pi\)
0.694117 0.719862i \(-0.255795\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −56.0908 −2.57906
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) −34.5959 −1.56448
\(490\) 0 0
\(491\) 14.1421i 0.638226i 0.947717 + 0.319113i \(0.103385\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 42.4264i − 1.89927i −0.313363 0.949633i \(-0.601456\pi\)
0.313363 0.949633i \(-0.398544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 40.9014i − 1.81650i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −30.7980 −1.35976
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −36.1918 −1.58559 −0.792797 0.609486i \(-0.791376\pi\)
−0.792797 + 0.609486i \(0.791376\pi\)
\(522\) 0 0
\(523\) − 45.6369i − 1.99556i −0.0665832 0.997781i \(-0.521210\pi\)
0.0665832 0.997781i \(-0.478790\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) − 97.5663i − 4.23402i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −17.8990 −0.772398
\(538\) 0 0
\(539\) 46.2726i 1.99310i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.0798i 1.88472i 0.334606 + 0.942358i \(0.391397\pi\)
−0.334606 + 0.942358i \(0.608603\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 164.283 6.93602
\(562\) 0 0
\(563\) 36.7696i 1.54965i 0.632175 + 0.774826i \(0.282163\pi\)
−0.632175 + 0.774826i \(0.717837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −40.5959 −1.70187 −0.850935 0.525271i \(-0.823964\pi\)
−0.850935 + 0.525271i \(0.823964\pi\)
\(570\) 0 0
\(571\) − 42.4264i − 1.77549i −0.460336 0.887745i \(-0.652271\pi\)
0.460336 0.887745i \(-0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 12.3939 0.515964 0.257982 0.966150i \(-0.416942\pi\)
0.257982 + 0.966150i \(0.416942\pi\)
\(578\) 0 0
\(579\) − 11.6315i − 0.483391i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 18.8455i − 0.777836i −0.921272 0.388918i \(-0.872849\pi\)
0.921272 0.388918i \(-0.127151\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −48.1918 −1.97900 −0.989501 0.144528i \(-0.953834\pi\)
−0.989501 + 0.144528i \(0.953834\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −8.30306 −0.338689 −0.169344 0.985557i \(-0.554165\pi\)
−0.169344 + 0.985557i \(0.554165\pi\)
\(602\) 0 0
\(603\) 54.3758i 2.21435i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) − 42.4264i − 1.70526i −0.522514 0.852631i \(-0.675006\pi\)
0.522514 0.852631i \(-0.324994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 52.2151i − 2.08527i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −78.1918 −3.10785
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −42.0000 −1.65890 −0.829450 0.558581i \(-0.811346\pi\)
−0.829450 + 0.558581i \(0.811346\pi\)
\(642\) 0 0
\(643\) − 8.48528i − 0.334627i −0.985904 0.167313i \(-0.946491\pi\)
0.985904 0.167313i \(-0.0535092\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 93.4847 3.66960
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 94.4949 3.68660
\(658\) 0 0
\(659\) − 8.45317i − 0.329289i −0.986353 0.164644i \(-0.947352\pi\)
0.986353 0.164644i \(-0.0526477\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.89898 0.341010
\(682\) 0 0
\(683\) 51.9294i 1.98702i 0.113728 + 0.993512i \(0.463721\pi\)
−0.113728 + 0.993512i \(0.536279\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 27.1092i 1.03128i 0.856804 + 0.515642i \(0.172447\pi\)
−0.856804 + 0.515642i \(0.827553\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −101.091 −3.82909
\(698\) 0 0
\(699\) − 94.3879i − 3.57008i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.33902i 0.198560i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −7.69694 −0.285072
\(730\) 0 0
\(731\) 67.0251i 2.47901i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −52.1010 −1.91917
\(738\) 0 0
\(739\) − 42.4264i − 1.56068i −0.625355 0.780340i \(-0.715046\pi\)
0.625355 0.780340i \(-0.284954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 97.7878i − 3.57787i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 65.2929 2.37940
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.2020 0.623574 0.311787 0.950152i \(-0.399073\pi\)
0.311787 + 0.950152i \(0.399073\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −55.0908 −1.98663 −0.993313 0.115454i \(-0.963168\pi\)
−0.993313 + 0.115454i \(0.963168\pi\)
\(770\) 0 0
\(771\) 94.3879i 3.39930i
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.1304i 1.15119i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25.4558i 0.907403i 0.891154 + 0.453701i \(0.149897\pi\)
−0.891154 + 0.453701i \(0.850103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −95.8888 −3.38806
\(802\) 0 0
\(803\) 90.5418i 3.19515i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) − 42.4264i − 1.48979i −0.667180 0.744896i \(-0.732499\pi\)
0.667180 0.744896i \(-0.267501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 21.3031 0.745300
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.6649i 1.97043i 0.171321 + 0.985215i \(0.445196\pi\)
−0.171321 + 0.985215i \(0.554804\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 55.2929 1.91578
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 56.6328i 1.95054i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 19.8990 0.682931
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.5959 1.59169 0.795843 0.605503i \(-0.207028\pi\)
0.795843 + 0.605503i \(0.207028\pi\)
\(858\) 0 0
\(859\) 54.4721i 1.85856i 0.369370 + 0.929282i \(0.379573\pi\)
−0.369370 + 0.929282i \(0.620427\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 142.821i − 4.85046i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 68.9898 2.33495
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) − 31.4305i − 1.05772i −0.848709 0.528861i \(-0.822619\pi\)
0.848709 0.528861i \(-0.177381\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 118.319i − 3.96383i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 59.3970i 1.97224i 0.166022 + 0.986122i \(0.446908\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 93.6969 3.10092
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −79.2929 −2.61279
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) 0 0
\(931\) − 17.5741i − 0.575969i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 61.0908 1.99575 0.997875 0.0651578i \(-0.0207551\pi\)
0.997875 + 0.0651578i \(0.0207551\pi\)
\(938\) 0 0
\(939\) − 31.4626i − 1.02674i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 53.7401i − 1.74632i −0.487435 0.873160i \(-0.662067\pi\)
0.487435 0.873160i \(-0.337933\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18.1918 0.589291 0.294646 0.955607i \(-0.404798\pi\)
0.294646 + 0.955607i \(0.404798\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) − 32.4483i − 1.04563i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) −62.3939 −2.00438
\(970\) 0 0
\(971\) − 31.2090i − 1.00155i −0.865579 0.500773i \(-0.833049\pi\)
0.865579 0.500773i \(-0.166951\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −56.8888 −1.82003 −0.910017 0.414572i \(-0.863931\pi\)
−0.910017 + 0.414572i \(0.863931\pi\)
\(978\) 0 0
\(979\) − 91.8773i − 2.93641i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 30.7980 0.977344
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3200.2.d.n.1601.1 4
4.3 odd 2 inner 3200.2.d.n.1601.4 yes 4
5.2 odd 4 3200.2.f.s.449.1 8
5.3 odd 4 3200.2.f.s.449.7 8
5.4 even 2 3200.2.d.q.1601.4 yes 4
8.3 odd 2 CM 3200.2.d.n.1601.1 4
8.5 even 2 inner 3200.2.d.n.1601.4 yes 4
16.3 odd 4 6400.2.a.cq.1.1 4
16.5 even 4 6400.2.a.cq.1.1 4
16.11 odd 4 6400.2.a.cq.1.4 4
16.13 even 4 6400.2.a.cq.1.4 4
20.3 even 4 3200.2.f.s.449.2 8
20.7 even 4 3200.2.f.s.449.8 8
20.19 odd 2 3200.2.d.q.1601.1 yes 4
40.3 even 4 3200.2.f.s.449.7 8
40.13 odd 4 3200.2.f.s.449.2 8
40.19 odd 2 3200.2.d.q.1601.4 yes 4
40.27 even 4 3200.2.f.s.449.1 8
40.29 even 2 3200.2.d.q.1601.1 yes 4
40.37 odd 4 3200.2.f.s.449.8 8
80.19 odd 4 6400.2.a.cr.1.4 4
80.29 even 4 6400.2.a.cr.1.1 4
80.59 odd 4 6400.2.a.cr.1.1 4
80.69 even 4 6400.2.a.cr.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3200.2.d.n.1601.1 4 1.1 even 1 trivial
3200.2.d.n.1601.1 4 8.3 odd 2 CM
3200.2.d.n.1601.4 yes 4 4.3 odd 2 inner
3200.2.d.n.1601.4 yes 4 8.5 even 2 inner
3200.2.d.q.1601.1 yes 4 20.19 odd 2
3200.2.d.q.1601.1 yes 4 40.29 even 2
3200.2.d.q.1601.4 yes 4 5.4 even 2
3200.2.d.q.1601.4 yes 4 40.19 odd 2
3200.2.f.s.449.1 8 5.2 odd 4
3200.2.f.s.449.1 8 40.27 even 4
3200.2.f.s.449.2 8 20.3 even 4
3200.2.f.s.449.2 8 40.13 odd 4
3200.2.f.s.449.7 8 5.3 odd 4
3200.2.f.s.449.7 8 40.3 even 4
3200.2.f.s.449.8 8 20.7 even 4
3200.2.f.s.449.8 8 40.37 odd 4
6400.2.a.cq.1.1 4 16.3 odd 4
6400.2.a.cq.1.1 4 16.5 even 4
6400.2.a.cq.1.4 4 16.11 odd 4
6400.2.a.cq.1.4 4 16.13 even 4
6400.2.a.cr.1.1 4 80.29 even 4
6400.2.a.cr.1.1 4 80.59 odd 4
6400.2.a.cr.1.4 4 80.19 odd 4
6400.2.a.cr.1.4 4 80.69 even 4