Properties

Label 3200.2.d.c
Level $3200$
Weight $2$
Character orbit 3200.d
Analytic conductor $25.552$
Analytic rank $1$
Dimension $2$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(25.5521286468\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} - 5 q^{9} - \beta q^{11} - 6 q^{17} + 3 \beta q^{19} - 2 \beta q^{27} + 8 q^{33} - 6 q^{41} - 3 \beta q^{43} - 7 q^{49} - 6 \beta q^{51} - 24 q^{57} - 5 \beta q^{59} - 3 \beta q^{67} + 2 q^{73} + q^{81} + \beta q^{83} - 18 q^{89} + 10 q^{97} + 5 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 10 q^{9} - 12 q^{17} + 16 q^{33} - 12 q^{41} - 14 q^{49} - 48 q^{57} + 4 q^{73} + 2 q^{81} - 36 q^{89} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1151\) \(2177\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1601.1
1.41421i
1.41421i
0 2.82843i 0 0 0 0 0 −5.00000 0
1601.2 0 2.82843i 0 0 0 0 0 −5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3200.2.d.c 2
4.b odd 2 1 inner 3200.2.d.c 2
5.b even 2 1 128.2.b.a 2
5.c odd 4 2 3200.2.f.o 4
8.b even 2 1 inner 3200.2.d.c 2
8.d odd 2 1 CM 3200.2.d.c 2
15.d odd 2 1 1152.2.d.c 2
16.e even 4 2 6400.2.a.by 2
16.f odd 4 2 6400.2.a.by 2
20.d odd 2 1 128.2.b.a 2
20.e even 4 2 3200.2.f.o 4
40.e odd 2 1 128.2.b.a 2
40.f even 2 1 128.2.b.a 2
40.i odd 4 2 3200.2.f.o 4
40.k even 4 2 3200.2.f.o 4
60.h even 2 1 1152.2.d.c 2
80.k odd 4 2 256.2.a.e 2
80.q even 4 2 256.2.a.e 2
120.i odd 2 1 1152.2.d.c 2
120.m even 2 1 1152.2.d.c 2
160.y odd 8 2 1024.2.e.a 2
160.y odd 8 2 1024.2.e.f 2
160.z even 8 2 1024.2.e.a 2
160.z even 8 2 1024.2.e.f 2
240.t even 4 2 2304.2.a.t 2
240.bm odd 4 2 2304.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.2.b.a 2 5.b even 2 1
128.2.b.a 2 20.d odd 2 1
128.2.b.a 2 40.e odd 2 1
128.2.b.a 2 40.f even 2 1
256.2.a.e 2 80.k odd 4 2
256.2.a.e 2 80.q even 4 2
1024.2.e.a 2 160.y odd 8 2
1024.2.e.a 2 160.z even 8 2
1024.2.e.f 2 160.y odd 8 2
1024.2.e.f 2 160.z even 8 2
1152.2.d.c 2 15.d odd 2 1
1152.2.d.c 2 60.h even 2 1
1152.2.d.c 2 120.i odd 2 1
1152.2.d.c 2 120.m even 2 1
2304.2.a.t 2 240.t even 4 2
2304.2.a.t 2 240.bm odd 4 2
3200.2.d.c 2 1.a even 1 1 trivial
3200.2.d.c 2 4.b odd 2 1 inner
3200.2.d.c 2 8.b even 2 1 inner
3200.2.d.c 2 8.d odd 2 1 CM
3200.2.f.o 4 5.c odd 4 2
3200.2.f.o 4 20.e even 4 2
3200.2.f.o 4 40.i odd 4 2
3200.2.f.o 4 40.k even 4 2
6400.2.a.by 2 16.e even 4 2
6400.2.a.by 2 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3200, [\chi])\):

\( T_{3}^{2} + 8 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{2} + 8 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 8 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 8 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 72 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 72 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 200 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 72 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 8 \) Copy content Toggle raw display
$89$ \( (T + 18)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less