Properties

Label 3200.2.a.b
Level $3200$
Weight $2$
Character orbit 3200.a
Self dual yes
Analytic conductor $25.552$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3200 = 2^{7} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.5521286468\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 3 q^{3} - 4 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{3} - 4 q^{7} + 6 q^{9} + 3 q^{11} + 2 q^{13} + 3 q^{17} + 7 q^{19} + 12 q^{21} - 6 q^{23} - 9 q^{27} - 6 q^{29} - 10 q^{31} - 9 q^{33} - 6 q^{39} - 11 q^{41} - 4 q^{43} + 2 q^{47} + 9 q^{49} - 9 q^{51} + 14 q^{53} - 21 q^{57} + 4 q^{59} - 8 q^{61} - 24 q^{63} - 5 q^{67} + 18 q^{69} + 2 q^{71} + 9 q^{73} - 12 q^{77} + 12 q^{79} + 9 q^{81} - q^{83} + 18 q^{87} + 3 q^{89} - 8 q^{91} + 30 q^{93} - 2 q^{97} + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 0 0 −4.00000 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3200.2.a.b yes 1
4.b odd 2 1 3200.2.a.ba yes 1
5.b even 2 1 3200.2.a.bb yes 1
5.c odd 4 2 3200.2.c.d 2
8.b even 2 1 3200.2.a.y yes 1
8.d odd 2 1 3200.2.a.d yes 1
20.d odd 2 1 3200.2.a.a 1
20.e even 4 2 3200.2.c.b 2
40.e odd 2 1 3200.2.a.z yes 1
40.f even 2 1 3200.2.a.c yes 1
40.i odd 4 2 3200.2.c.a 2
40.k even 4 2 3200.2.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3200.2.a.a 1 20.d odd 2 1
3200.2.a.b yes 1 1.a even 1 1 trivial
3200.2.a.c yes 1 40.f even 2 1
3200.2.a.d yes 1 8.d odd 2 1
3200.2.a.y yes 1 8.b even 2 1
3200.2.a.z yes 1 40.e odd 2 1
3200.2.a.ba yes 1 4.b odd 2 1
3200.2.a.bb yes 1 5.b even 2 1
3200.2.c.a 2 40.i odd 4 2
3200.2.c.b 2 20.e even 4 2
3200.2.c.c 2 40.k even 4 2
3200.2.c.d 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3200))\):

\( T_{3} + 3 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T - 7 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 10 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 11 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 2 \) Copy content Toggle raw display
$53$ \( T - 14 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T + 5 \) Copy content Toggle raw display
$71$ \( T - 2 \) Copy content Toggle raw display
$73$ \( T - 9 \) Copy content Toggle raw display
$79$ \( T - 12 \) Copy content Toggle raw display
$83$ \( T + 1 \) Copy content Toggle raw display
$89$ \( T - 3 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less