# Properties

 Label 3200.1.bd.a Level $3200$ Weight $1$ Character orbit 3200.bd Analytic conductor $1.597$ Analytic rank $0$ Dimension $4$ Projective image $D_{10}$ CM discriminant -4 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3200,1,Mod(191,3200)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3200, base_ring=CyclotomicField(10))

chi = DirichletCharacter(H, H._module([5, 5, 2]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3200.191");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3200 = 2^{7} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3200.bd (of order $$10$$, degree $$4$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.59700804043$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{10})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - x^{3} + x^{2} - x + 1$$ x^4 - x^3 + x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{10}$$ Projective field: Galois closure of 10.2.80000000000000000.19

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q + \zeta_{10}^{4} q^{5} - \zeta_{10}^{2} q^{9} +O(q^{10})$$ q + z^4 * q^5 - z^2 * q^9 $$q + \zeta_{10}^{4} q^{5} - \zeta_{10}^{2} q^{9} + (\zeta_{10}^{3} - \zeta_{10}) q^{13} + ( - \zeta_{10}^{2} + \zeta_{10}) q^{17} - \zeta_{10}^{3} q^{25} + ( - \zeta_{10}^{4} - \zeta_{10}^{3}) q^{29} + ( - \zeta_{10}^{4} + 1) q^{37} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{41} + \zeta_{10} q^{45} + q^{49} + (\zeta_{10}^{2} - 1) q^{53} + (\zeta_{10}^{4} - \zeta_{10}^{2}) q^{61} + ( - \zeta_{10}^{2} + 1) q^{65} + ( - \zeta_{10}^{4} - \zeta_{10}^{2}) q^{73} + \zeta_{10}^{4} q^{81} + (\zeta_{10} - 1) q^{85} + (\zeta_{10} - 1) q^{89} + ( - \zeta_{10}^{4} + \zeta_{10}^{3}) q^{97} +O(q^{100})$$ q + z^4 * q^5 - z^2 * q^9 + (z^3 - z) * q^13 + (-z^2 + z) * q^17 - z^3 * q^25 + (-z^4 - z^3) * q^29 + (-z^4 + 1) * q^37 + (-z^3 - z) * q^41 + z * q^45 + q^49 + (z^2 - 1) * q^53 + (z^4 - z^2) * q^61 + (-z^2 + 1) * q^65 + (-z^4 - z^2) * q^73 + z^4 * q^81 + (z - 1) * q^85 + (z - 1) * q^89 + (-z^4 + z^3) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - q^{5} + q^{9}+O(q^{10})$$ 4 * q - q^5 + q^9 $$4 q - q^{5} + q^{9} + 2 q^{17} - q^{25} + 5 q^{37} - 2 q^{41} + q^{45} + 4 q^{49} - 5 q^{53} + 5 q^{65} + 2 q^{73} - q^{81} - 3 q^{85} - 3 q^{89} + 2 q^{97}+O(q^{100})$$ 4 * q - q^5 + q^9 + 2 * q^17 - q^25 + 5 * q^37 - 2 * q^41 + q^45 + 4 * q^49 - 5 * q^53 + 5 * q^65 + 2 * q^73 - q^81 - 3 * q^85 - 3 * q^89 + 2 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3200\mathbb{Z}\right)^\times$$.

 $$n$$ $$901$$ $$1151$$ $$2177$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$-\zeta_{10}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
191.1
 −0.309017 − 0.951057i 0.809017 − 0.587785i 0.809017 + 0.587785i −0.309017 + 0.951057i
0 0 0 0.309017 0.951057i 0 0 0 0.809017 0.587785i 0
831.1 0 0 0 −0.809017 0.587785i 0 0 0 −0.309017 + 0.951057i 0
1471.1 0 0 0 −0.809017 + 0.587785i 0 0 0 −0.309017 0.951057i 0
2111.1 0 0 0 0.309017 + 0.951057i 0 0 0 0.809017 + 0.587785i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
200.n odd 10 1 inner
200.t even 10 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3200.1.bd.a 4
4.b odd 2 1 CM 3200.1.bd.a 4
8.b even 2 1 3200.1.bd.b yes 4
8.d odd 2 1 3200.1.bd.b yes 4
25.d even 5 1 3200.1.bd.b yes 4
100.j odd 10 1 3200.1.bd.b yes 4
200.n odd 10 1 inner 3200.1.bd.a 4
200.t even 10 1 inner 3200.1.bd.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3200.1.bd.a 4 1.a even 1 1 trivial
3200.1.bd.a 4 4.b odd 2 1 CM
3200.1.bd.a 4 200.n odd 10 1 inner
3200.1.bd.a 4 200.t even 10 1 inner
3200.1.bd.b yes 4 8.b even 2 1
3200.1.bd.b yes 4 8.d odd 2 1
3200.1.bd.b yes 4 25.d even 5 1
3200.1.bd.b yes 4 100.j odd 10 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{13}^{4} + 5T_{13} + 5$$ acting on $$S_{1}^{\mathrm{new}}(3200, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$T^{4} + T^{3} + T^{2} + \cdots + 1$$
$7$ $$T^{4}$$
$11$ $$T^{4}$$
$13$ $$T^{4} + 5T + 5$$
$17$ $$T^{4} - 2 T^{3} + \cdots + 1$$
$19$ $$T^{4}$$
$23$ $$T^{4}$$
$29$ $$T^{4} + 5T + 5$$
$31$ $$T^{4}$$
$37$ $$T^{4} - 5 T^{3} + \cdots + 5$$
$41$ $$T^{4} + 2 T^{3} + \cdots + 1$$
$43$ $$T^{4}$$
$47$ $$T^{4}$$
$53$ $$T^{4} + 5 T^{3} + \cdots + 5$$
$59$ $$T^{4}$$
$61$ $$T^{4} + 5T + 5$$
$67$ $$T^{4}$$
$71$ $$T^{4}$$
$73$ $$T^{4} - 2 T^{3} + \cdots + 1$$
$79$ $$T^{4}$$
$83$ $$T^{4}$$
$89$ $$T^{4} + 3 T^{3} + \cdots + 1$$
$97$ $$T^{4} - 2 T^{3} + \cdots + 1$$