Properties

 Label 3200.1 Level 3200 Weight 1 Dimension 69 Nonzero newspaces 6 Newform subspaces 18 Sturm bound 614400 Trace bound 9

Defining parameters

 Level: $$N$$ = $$3200 = 2^{7} \cdot 5^{2}$$ Weight: $$k$$ = $$1$$ Nonzero newspaces: $$6$$ Newform subspaces: $$18$$ Sturm bound: $$614400$$ Trace bound: $$9$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{1}(\Gamma_1(3200))$$.

Total New Old
Modular forms 4864 1053 3811
Cusp forms 384 69 315
Eisenstein series 4480 984 3496

The following table gives the dimensions of subspaces with specified projective image type.

$$D_n$$ $$A_4$$ $$S_4$$ $$A_5$$
Dimension 69 0 0 0

Trace form

 $$69 q + 3 q^{9} + O(q^{10})$$ $$69 q + 3 q^{9} - 2 q^{17} - 14 q^{41} - 3 q^{49} + 8 q^{65} + 14 q^{73} - 11 q^{81} + 6 q^{89} + 14 q^{97} + O(q^{100})$$

Decomposition of $$S_{1}^{\mathrm{new}}(\Gamma_1(3200))$$

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list available newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
3200.1.b $$\chi_{3200}(1151, \cdot)$$ None 0 1
3200.1.e $$\chi_{3200}(1599, \cdot)$$ 3200.1.e.a 2 1
3200.1.e.b 4
3200.1.g $$\chi_{3200}(2751, \cdot)$$ 3200.1.g.a 1 1
3200.1.g.b 2
3200.1.g.c 2
3200.1.g.d 2
3200.1.g.e 4
3200.1.h $$\chi_{3200}(3199, \cdot)$$ None 0 1
3200.1.i $$\chi_{3200}(2593, \cdot)$$ None 0 2
3200.1.k $$\chi_{3200}(799, \cdot)$$ None 0 2
3200.1.m $$\chi_{3200}(193, \cdot)$$ 3200.1.m.a 2 2
3200.1.m.b 2
3200.1.m.c 4
3200.1.m.d 4
3200.1.m.e 8
3200.1.p $$\chi_{3200}(257, \cdot)$$ None 0 2
3200.1.r $$\chi_{3200}(351, \cdot)$$ None 0 2
3200.1.t $$\chi_{3200}(993, \cdot)$$ None 0 2
3200.1.w $$\chi_{3200}(593, \cdot)$$ None 0 4
3200.1.x $$\chi_{3200}(751, \cdot)$$ None 0 4
3200.1.z $$\chi_{3200}(399, \cdot)$$ None 0 4
3200.1.bc $$\chi_{3200}(657, \cdot)$$ None 0 4
3200.1.bd $$\chi_{3200}(191, \cdot)$$ 3200.1.bd.a 4 4
3200.1.bd.b 4
3200.1.bf $$\chi_{3200}(639, \cdot)$$ None 0 4
3200.1.bh $$\chi_{3200}(511, \cdot)$$ None 0 4
3200.1.bi $$\chi_{3200}(319, \cdot)$$ 3200.1.bi.a 4 4
3200.1.bi.b 4
3200.1.bk $$\chi_{3200}(457, \cdot)$$ None 0 8
3200.1.bo $$\chi_{3200}(151, \cdot)$$ None 0 8
3200.1.bp $$\chi_{3200}(199, \cdot)$$ None 0 8
3200.1.bq $$\chi_{3200}(57, \cdot)$$ None 0 8
3200.1.bs $$\chi_{3200}(353, \cdot)$$ None 0 8
3200.1.bv $$\chi_{3200}(159, \cdot)$$ None 0 8
3200.1.bw $$\chi_{3200}(513, \cdot)$$ None 0 8
3200.1.bz $$\chi_{3200}(577, \cdot)$$ 3200.1.bz.a 8 8
3200.1.bz.b 8
3200.1.ca $$\chi_{3200}(31, \cdot)$$ None 0 8
3200.1.cd $$\chi_{3200}(33, \cdot)$$ None 0 8
3200.1.ce $$\chi_{3200}(93, \cdot)$$ None 0 16
3200.1.ch $$\chi_{3200}(99, \cdot)$$ None 0 16
3200.1.cj $$\chi_{3200}(51, \cdot)$$ None 0 16
3200.1.ck $$\chi_{3200}(157, \cdot)$$ None 0 16
3200.1.cm $$\chi_{3200}(177, \cdot)$$ None 0 16
3200.1.cp $$\chi_{3200}(79, \cdot)$$ None 0 16
3200.1.cr $$\chi_{3200}(111, \cdot)$$ None 0 16
3200.1.cs $$\chi_{3200}(17, \cdot)$$ None 0 16
3200.1.cv $$\chi_{3200}(73, \cdot)$$ None 0 32
3200.1.cw $$\chi_{3200}(39, \cdot)$$ None 0 32
3200.1.cx $$\chi_{3200}(71, \cdot)$$ None 0 32
3200.1.db $$\chi_{3200}(137, \cdot)$$ None 0 32
3200.1.dd $$\chi_{3200}(53, \cdot)$$ None 0 64
3200.1.de $$\chi_{3200}(11, \cdot)$$ None 0 64
3200.1.dg $$\chi_{3200}(19, \cdot)$$ None 0 64
3200.1.dj $$\chi_{3200}(13, \cdot)$$ None 0 64

Decomposition of $$S_{1}^{\mathrm{old}}(\Gamma_1(3200))$$ into lower level spaces

$$S_{1}^{\mathrm{old}}(\Gamma_1(3200)) \cong$$ $$S_{1}^{\mathrm{new}}(\Gamma_1(1))$$$$^{\oplus 24}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(2))$$$$^{\oplus 21}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(4))$$$$^{\oplus 18}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(5))$$$$^{\oplus 16}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(8))$$$$^{\oplus 15}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(10))$$$$^{\oplus 14}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(16))$$$$^{\oplus 12}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(20))$$$$^{\oplus 12}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(25))$$$$^{\oplus 8}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(32))$$$$^{\oplus 9}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(40))$$$$^{\oplus 10}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(50))$$$$^{\oplus 7}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(64))$$$$^{\oplus 6}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(80))$$$$^{\oplus 8}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(100))$$$$^{\oplus 6}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(128))$$$$^{\oplus 3}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(160))$$$$^{\oplus 6}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(200))$$$$^{\oplus 5}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(320))$$$$^{\oplus 4}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(400))$$$$^{\oplus 4}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(640))$$$$^{\oplus 2}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(800))$$$$^{\oplus 3}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(1600))$$$$^{\oplus 2}$$$$\oplus$$$$S_{1}^{\mathrm{new}}(\Gamma_1(3200))$$$$^{\oplus 1}$$