Properties

Label 320.8.c.b
Level $320$
Weight $8$
Character orbit 320.c
Analytic conductor $99.963$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,8,Mod(129,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.129"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-550,0,0,0,2062,0,2648] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(99.9632081549\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 17 \beta q^{3} + (25 \beta - 275) q^{5} + 53 \beta q^{7} + 1031 q^{9} + 1324 q^{11} + 4414 \beta q^{13} + ( - 4675 \beta - 1700) q^{15} - 12000 \beta q^{17} - 4876 q^{19} - 3604 q^{21} - 23323 \beta q^{23} + \cdots + 1365044 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 550 q^{5} + 2062 q^{9} + 2648 q^{11} - 3400 q^{15} - 9752 q^{19} - 7208 q^{21} + 146250 q^{25} - 221804 q^{29} - 495360 q^{31} - 10600 q^{35} - 600304 q^{39} + 208804 q^{41} - 567050 q^{45} + 1624614 q^{49}+ \cdots + 2730088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.00000i
1.00000i
0 34.0000i 0 −275.000 50.0000i 0 106.000i 0 1031.00 0
129.2 0 34.0000i 0 −275.000 + 50.0000i 0 106.000i 0 1031.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.8.c.b 2
4.b odd 2 1 320.8.c.a 2
5.b even 2 1 inner 320.8.c.b 2
8.b even 2 1 40.8.c.a 2
8.d odd 2 1 80.8.c.b 2
20.d odd 2 1 320.8.c.a 2
24.h odd 2 1 360.8.f.a 2
40.e odd 2 1 80.8.c.b 2
40.f even 2 1 40.8.c.a 2
40.i odd 4 1 200.8.a.c 1
40.i odd 4 1 200.8.a.f 1
40.k even 4 1 400.8.a.h 1
40.k even 4 1 400.8.a.n 1
120.i odd 2 1 360.8.f.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.8.c.a 2 8.b even 2 1
40.8.c.a 2 40.f even 2 1
80.8.c.b 2 8.d odd 2 1
80.8.c.b 2 40.e odd 2 1
200.8.a.c 1 40.i odd 4 1
200.8.a.f 1 40.i odd 4 1
320.8.c.a 2 4.b odd 2 1
320.8.c.a 2 20.d odd 2 1
320.8.c.b 2 1.a even 1 1 trivial
320.8.c.b 2 5.b even 2 1 inner
360.8.f.a 2 24.h odd 2 1
360.8.f.a 2 120.i odd 2 1
400.8.a.h 1 40.k even 4 1
400.8.a.n 1 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(320, [\chi])\):

\( T_{3}^{2} + 1156 \) Copy content Toggle raw display
\( T_{11} - 1324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1156 \) Copy content Toggle raw display
$5$ \( T^{2} + 550T + 78125 \) Copy content Toggle raw display
$7$ \( T^{2} + 11236 \) Copy content Toggle raw display
$11$ \( (T - 1324)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 77933584 \) Copy content Toggle raw display
$17$ \( T^{2} + 576000000 \) Copy content Toggle raw display
$19$ \( (T + 4876)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2175849316 \) Copy content Toggle raw display
$29$ \( (T + 110902)^{2} \) Copy content Toggle raw display
$31$ \( (T + 247680)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 129666248464 \) Copy content Toggle raw display
$41$ \( (T - 104402)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 509256358884 \) Copy content Toggle raw display
$47$ \( T^{2} + 24611961924 \) Copy content Toggle raw display
$53$ \( T^{2} + 1136927447824 \) Copy content Toggle raw display
$59$ \( (T - 832572)^{2} \) Copy content Toggle raw display
$61$ \( (T + 529070)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 17425765638724 \) Copy content Toggle raw display
$71$ \( (T - 5176568)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 56632576576 \) Copy content Toggle raw display
$79$ \( (T - 3742736)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 61809251476996 \) Copy content Toggle raw display
$89$ \( (T + 4300854)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1317426475264 \) Copy content Toggle raw display
show more
show less