Properties

Label 320.8.a.l
Level $320$
Weight $8$
Character orbit 320.a
Self dual yes
Analytic conductor $99.963$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,8,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-20,0,250,0,-100,0,5554] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.9632081549\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 16\sqrt{19}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 10) q^{3} + 125 q^{5} + (7 \beta - 50) q^{7} + ( - 20 \beta + 2777) q^{9} + ( - 50 \beta - 2272) q^{11} + (76 \beta - 1770) q^{13} + (125 \beta - 1250) q^{15} + ( - 148 \beta - 13670) q^{17}+ \cdots + ( - 93410 \beta - 1445344) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 20 q^{3} + 250 q^{5} - 100 q^{7} + 5554 q^{9} - 4544 q^{11} - 3540 q^{13} - 2500 q^{15} - 27340 q^{17} - 38760 q^{19} + 69096 q^{21} - 124140 q^{23} + 31250 q^{25} - 206360 q^{27} + 72260 q^{29} + 306824 q^{31}+ \cdots - 2890688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.35890
4.35890
0 −79.7424 0 125.000 0 −538.197 0 4171.85 0
1.2 0 59.7424 0 125.000 0 438.197 0 1382.15 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.8.a.l 2
4.b odd 2 1 320.8.a.u 2
8.b even 2 1 5.8.a.b 2
8.d odd 2 1 80.8.a.g 2
24.h odd 2 1 45.8.a.h 2
40.e odd 2 1 400.8.a.bb 2
40.f even 2 1 25.8.a.b 2
40.i odd 4 2 25.8.b.c 4
40.k even 4 2 400.8.c.m 4
56.h odd 2 1 245.8.a.c 2
88.b odd 2 1 605.8.a.d 2
120.i odd 2 1 225.8.a.w 2
120.w even 4 2 225.8.b.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.8.a.b 2 8.b even 2 1
25.8.a.b 2 40.f even 2 1
25.8.b.c 4 40.i odd 4 2
45.8.a.h 2 24.h odd 2 1
80.8.a.g 2 8.d odd 2 1
225.8.a.w 2 120.i odd 2 1
225.8.b.m 4 120.w even 4 2
245.8.a.c 2 56.h odd 2 1
320.8.a.l 2 1.a even 1 1 trivial
320.8.a.u 2 4.b odd 2 1
400.8.a.bb 2 40.e odd 2 1
400.8.c.m 4 40.k even 4 2
605.8.a.d 2 88.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 20T_{3} - 4764 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(320))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 20T - 4764 \) Copy content Toggle raw display
$5$ \( (T - 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 100T - 235836 \) Copy content Toggle raw display
$11$ \( T^{2} + 4544 T - 6998016 \) Copy content Toggle raw display
$13$ \( T^{2} + 3540 T - 24961564 \) Copy content Toggle raw display
$17$ \( T^{2} + 27340 T + 80327844 \) Copy content Toggle raw display
$19$ \( T^{2} + 38760 T + 367802000 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 3840033636 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 27652933500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 22939401744 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 45775154396 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 227722158876 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 96985991164 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 154530884316 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 1213130224836 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 3614968086000 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 672038095516 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 4620664454244 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 275746164336 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 1330152816836 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 12272229720000 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 5699002341636 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1403196358500 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 18666217374716 \) Copy content Toggle raw display
show more
show less