Properties

Label 320.8.a.k
Level $320$
Weight $8$
Character orbit 320.a
Self dual yes
Analytic conductor $99.963$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,8,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-20,0,-250,0,-1660,0,4858] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.9632081549\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1129}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 282 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 20)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{1129}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 10) q^{3} - 125 q^{5} + ( - 9 \beta - 830) q^{7} + (20 \beta + 2429) q^{9} + ( - 90 \beta + 1800) q^{11} + ( - 36 \beta - 6590) q^{13} + (125 \beta + 1250) q^{15} + (468 \beta + 2730) q^{17}+ \cdots + ( - 182610 \beta - 3756600) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 20 q^{3} - 250 q^{5} - 1660 q^{7} + 4858 q^{9} + 3600 q^{11} - 13180 q^{13} + 2500 q^{15} + 5460 q^{17} - 40472 q^{19} + 97888 q^{21} + 41820 q^{23} + 31250 q^{25} - 185480 q^{27} - 118668 q^{29}+ \cdots - 7513200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
17.3003
−16.3003
0 −77.2012 0 −125.000 0 −1434.81 0 3773.02 0
1.2 0 57.2012 0 −125.000 0 −225.189 0 1084.98 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.8.a.k 2
4.b odd 2 1 320.8.a.t 2
8.b even 2 1 80.8.a.i 2
8.d odd 2 1 20.8.a.b 2
24.f even 2 1 180.8.a.g 2
40.e odd 2 1 100.8.a.c 2
40.f even 2 1 400.8.a.w 2
40.i odd 4 2 400.8.c.n 4
40.k even 4 2 100.8.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.8.a.b 2 8.d odd 2 1
80.8.a.i 2 8.b even 2 1
100.8.a.c 2 40.e odd 2 1
100.8.c.b 4 40.k even 4 2
180.8.a.g 2 24.f even 2 1
320.8.a.k 2 1.a even 1 1 trivial
320.8.a.t 2 4.b odd 2 1
400.8.a.w 2 40.f even 2 1
400.8.c.n 4 40.i odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 20T_{3} - 4416 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(320))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 20T - 4416 \) Copy content Toggle raw display
$5$ \( (T + 125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1660 T + 323104 \) Copy content Toggle raw display
$11$ \( T^{2} - 3600 T - 33339600 \) Copy content Toggle raw display
$13$ \( T^{2} + 13180 T + 37575364 \) Copy content Toggle raw display
$17$ \( T^{2} - 5460 T - 981659484 \) Copy content Toggle raw display
$19$ \( T^{2} + 40472 T + 263177296 \) Copy content Toggle raw display
$23$ \( T^{2} - 41820 T + 419304096 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 2935249956 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 41450184704 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 69364995836 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 75487736124 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 323163388000 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 1069567347456 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 323963254044 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 500302949904 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 5384698256156 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 403671776224 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 761950469376 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 2578241352956 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 19260741458944 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 13004909778816 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 49903967496996 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 49147910866084 \) Copy content Toggle raw display
show more
show less