Properties

Label 320.6.n
Level 320
Weight 6
Character orbit n
Rep. character \(\chi_{320}(63,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 116
Sturm bound 288

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(288\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(320, [\chi])\).

Total New Old
Modular forms 504 124 380
Cusp forms 456 116 340
Eisenstein series 48 8 40

Trace form

\( 116q + 4q^{5} + O(q^{10}) \) \( 116q + 4q^{5} + 4q^{13} - 812q^{17} + 8q^{21} + 6228q^{25} + 968q^{33} + 4q^{37} - 8q^{41} - 12496q^{45} - 77708q^{53} - 976q^{57} - 96152q^{61} + 35364q^{65} + 10068q^{73} - 308232q^{77} - 371772q^{81} + 31636q^{85} + 364744q^{93} - 103548q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(320, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(320, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(320, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database