Properties

Label 320.6.l
Level 320
Weight 6
Character orbit l
Rep. character \(\chi_{320}(81,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 80
Newform subspaces 1
Sturm bound 288
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(320, [\chi])\).

Total New Old
Modular forms 496 80 416
Cusp forms 464 80 384
Eisenstein series 32 0 32

Trace form

\( 80q + O(q^{10}) \) \( 80q - 1208q^{11} + 1800q^{15} - 2360q^{19} + 7464q^{27} - 8144q^{29} + 21296q^{37} - 32072q^{43} + 88360q^{47} - 192080q^{49} + 5920q^{51} - 49456q^{53} - 44984q^{59} + 48080q^{61} - 158760q^{63} - 61160q^{67} - 22320q^{69} - 14896q^{77} - 177680q^{79} - 524880q^{81} + 329240q^{83} + 132400q^{85} - 364832q^{91} - 362352q^{93} - 288800q^{95} - 659000q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(320, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
320.6.l.a \(80\) \(51.323\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{6}^{\mathrm{old}}(320, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(320, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database