Properties

Label 320.6.f.c.289.9
Level $320$
Weight $6$
Character 320.289
Analytic conductor $51.323$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(51.3228223402\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 39122 x^{12} + 391243971 x^{8} + 75462898750 x^{4} + 18538406640625\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{42}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.9
Root \(-1.86808 + 3.34569i\) of defining polynomial
Character \(\chi\) \(=\) 320.289
Dual form 320.6.f.c.289.10

$q$-expansion

\(f(q)\) \(=\) \(q+10.4275 q^{3} +(-17.9907 - 52.9276i) q^{5} +86.7391i q^{7} -134.267 q^{9} +O(q^{10})\) \(q+10.4275 q^{3} +(-17.9907 - 52.9276i) q^{5} +86.7391i q^{7} -134.267 q^{9} +258.633i q^{11} +465.165 q^{13} +(-187.599 - 551.904i) q^{15} -2029.54i q^{17} +1050.43i q^{19} +904.474i q^{21} +3994.40i q^{23} +(-2477.67 + 1904.41i) q^{25} -3933.96 q^{27} +3242.70i q^{29} +991.511 q^{31} +2696.91i q^{33} +(4590.89 - 1560.50i) q^{35} +8820.20 q^{37} +4850.52 q^{39} +5631.53 q^{41} +1775.46 q^{43} +(2415.56 + 7106.42i) q^{45} +17777.7i q^{47} +9283.33 q^{49} -21163.1i q^{51} -25903.3 q^{53} +(13688.8 - 4653.00i) q^{55} +10953.4i q^{57} +18166.8i q^{59} +35461.5i q^{61} -11646.2i q^{63} +(-8368.67 - 24620.1i) q^{65} +42068.8 q^{67} +41651.7i q^{69} +71392.3 q^{71} +3256.52i q^{73} +(-25835.9 + 19858.3i) q^{75} -22433.6 q^{77} +84229.0 q^{79} -8394.67 q^{81} -79029.5 q^{83} +(-107419. + 36513.0i) q^{85} +33813.3i q^{87} -65176.4 q^{89} +40348.0i q^{91} +10339.0 q^{93} +(55596.9 - 18898.1i) q^{95} -33977.4i q^{97} -34725.8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 1904q^{9} + O(q^{10}) \) \( 16q + 1904q^{9} + 880q^{25} - 100352q^{41} + 128272q^{49} + 149760q^{65} - 154576q^{81} - 459296q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.4275 0.668926 0.334463 0.942409i \(-0.391445\pi\)
0.334463 + 0.942409i \(0.391445\pi\)
\(4\) 0 0
\(5\) −17.9907 52.9276i −0.321828 0.946798i
\(6\) 0 0
\(7\) 86.7391i 0.669067i 0.942384 + 0.334534i \(0.108579\pi\)
−0.942384 + 0.334534i \(0.891421\pi\)
\(8\) 0 0
\(9\) −134.267 −0.552538
\(10\) 0 0
\(11\) 258.633i 0.644470i 0.946660 + 0.322235i \(0.104434\pi\)
−0.946660 + 0.322235i \(0.895566\pi\)
\(12\) 0 0
\(13\) 465.165 0.763394 0.381697 0.924287i \(-0.375340\pi\)
0.381697 + 0.924287i \(0.375340\pi\)
\(14\) 0 0
\(15\) −187.599 551.904i −0.215279 0.633338i
\(16\) 0 0
\(17\) 2029.54i 1.70324i −0.524158 0.851621i \(-0.675620\pi\)
0.524158 0.851621i \(-0.324380\pi\)
\(18\) 0 0
\(19\) 1050.43i 0.667551i 0.942653 + 0.333776i \(0.108323\pi\)
−0.942653 + 0.333776i \(0.891677\pi\)
\(20\) 0 0
\(21\) 904.474i 0.447557i
\(22\) 0 0
\(23\) 3994.40i 1.57446i 0.616659 + 0.787230i \(0.288486\pi\)
−0.616659 + 0.787230i \(0.711514\pi\)
\(24\) 0 0
\(25\) −2477.67 + 1904.41i −0.792853 + 0.609413i
\(26\) 0 0
\(27\) −3933.96 −1.03853
\(28\) 0 0
\(29\) 3242.70i 0.715998i 0.933722 + 0.357999i \(0.116541\pi\)
−0.933722 + 0.357999i \(0.883459\pi\)
\(30\) 0 0
\(31\) 991.511 0.185308 0.0926538 0.995698i \(-0.470465\pi\)
0.0926538 + 0.995698i \(0.470465\pi\)
\(32\) 0 0
\(33\) 2696.91i 0.431103i
\(34\) 0 0
\(35\) 4590.89 1560.50i 0.633471 0.215325i
\(36\) 0 0
\(37\) 8820.20 1.05919 0.529596 0.848250i \(-0.322344\pi\)
0.529596 + 0.848250i \(0.322344\pi\)
\(38\) 0 0
\(39\) 4850.52 0.510654
\(40\) 0 0
\(41\) 5631.53 0.523199 0.261600 0.965177i \(-0.415750\pi\)
0.261600 + 0.965177i \(0.415750\pi\)
\(42\) 0 0
\(43\) 1775.46 0.146433 0.0732166 0.997316i \(-0.476674\pi\)
0.0732166 + 0.997316i \(0.476674\pi\)
\(44\) 0 0
\(45\) 2415.56 + 7106.42i 0.177822 + 0.523142i
\(46\) 0 0
\(47\) 17777.7i 1.17390i 0.809624 + 0.586949i \(0.199671\pi\)
−0.809624 + 0.586949i \(0.800329\pi\)
\(48\) 0 0
\(49\) 9283.33 0.552349
\(50\) 0 0
\(51\) 21163.1i 1.13934i
\(52\) 0 0
\(53\) −25903.3 −1.26668 −0.633338 0.773876i \(-0.718316\pi\)
−0.633338 + 0.773876i \(0.718316\pi\)
\(54\) 0 0
\(55\) 13688.8 4653.00i 0.610183 0.207409i
\(56\) 0 0
\(57\) 10953.4i 0.446542i
\(58\) 0 0
\(59\) 18166.8i 0.679437i 0.940527 + 0.339718i \(0.110332\pi\)
−0.940527 + 0.339718i \(0.889668\pi\)
\(60\) 0 0
\(61\) 35461.5i 1.22020i 0.792323 + 0.610102i \(0.208872\pi\)
−0.792323 + 0.610102i \(0.791128\pi\)
\(62\) 0 0
\(63\) 11646.2i 0.369685i
\(64\) 0 0
\(65\) −8368.67 24620.1i −0.245682 0.722780i
\(66\) 0 0
\(67\) 42068.8 1.14492 0.572458 0.819934i \(-0.305990\pi\)
0.572458 + 0.819934i \(0.305990\pi\)
\(68\) 0 0
\(69\) 41651.7i 1.05320i
\(70\) 0 0
\(71\) 71392.3 1.68076 0.840380 0.541998i \(-0.182332\pi\)
0.840380 + 0.541998i \(0.182332\pi\)
\(72\) 0 0
\(73\) 3256.52i 0.0715231i 0.999360 + 0.0357615i \(0.0113857\pi\)
−0.999360 + 0.0357615i \(0.988614\pi\)
\(74\) 0 0
\(75\) −25835.9 + 19858.3i −0.530360 + 0.407652i
\(76\) 0 0
\(77\) −22433.6 −0.431194
\(78\) 0 0
\(79\) 84229.0 1.51843 0.759214 0.650841i \(-0.225584\pi\)
0.759214 + 0.650841i \(0.225584\pi\)
\(80\) 0 0
\(81\) −8394.67 −0.142164
\(82\) 0 0
\(83\) −79029.5 −1.25920 −0.629599 0.776920i \(-0.716781\pi\)
−0.629599 + 0.776920i \(0.716781\pi\)
\(84\) 0 0
\(85\) −107419. + 36513.0i −1.61263 + 0.548151i
\(86\) 0 0
\(87\) 33813.3i 0.478950i
\(88\) 0 0
\(89\) −65176.4 −0.872199 −0.436099 0.899899i \(-0.643640\pi\)
−0.436099 + 0.899899i \(0.643640\pi\)
\(90\) 0 0
\(91\) 40348.0i 0.510762i
\(92\) 0 0
\(93\) 10339.0 0.123957
\(94\) 0 0
\(95\) 55596.9 18898.1i 0.632036 0.214837i
\(96\) 0 0
\(97\) 33977.4i 0.366658i −0.983052 0.183329i \(-0.941313\pi\)
0.983052 0.183329i \(-0.0586873\pi\)
\(98\) 0 0
\(99\) 34725.8i 0.356094i
\(100\) 0 0
\(101\) 107891.i 1.05240i 0.850360 + 0.526202i \(0.176384\pi\)
−0.850360 + 0.526202i \(0.823616\pi\)
\(102\) 0 0
\(103\) 23048.1i 0.214063i 0.994256 + 0.107032i \(0.0341346\pi\)
−0.994256 + 0.107032i \(0.965865\pi\)
\(104\) 0 0
\(105\) 47871.7 16272.2i 0.423746 0.144036i
\(106\) 0 0
\(107\) −72095.2 −0.608761 −0.304381 0.952550i \(-0.598449\pi\)
−0.304381 + 0.952550i \(0.598449\pi\)
\(108\) 0 0
\(109\) 177590.i 1.43170i 0.698254 + 0.715850i \(0.253960\pi\)
−0.698254 + 0.715850i \(0.746040\pi\)
\(110\) 0 0
\(111\) 91972.9 0.708521
\(112\) 0 0
\(113\) 147312.i 1.08528i 0.839966 + 0.542639i \(0.182575\pi\)
−0.839966 + 0.542639i \(0.817425\pi\)
\(114\) 0 0
\(115\) 211414. 71862.2i 1.49070 0.506706i
\(116\) 0 0
\(117\) −62456.2 −0.421804
\(118\) 0 0
\(119\) 176041. 1.13958
\(120\) 0 0
\(121\) 94159.8 0.584658
\(122\) 0 0
\(123\) 58723.0 0.349982
\(124\) 0 0
\(125\) 145371. + 96875.2i 0.832153 + 0.554546i
\(126\) 0 0
\(127\) 139884.i 0.769588i 0.923003 + 0.384794i \(0.125727\pi\)
−0.923003 + 0.384794i \(0.874273\pi\)
\(128\) 0 0
\(129\) 18513.7 0.0979531
\(130\) 0 0
\(131\) 41603.5i 0.211813i 0.994376 + 0.105906i \(0.0337743\pi\)
−0.994376 + 0.105906i \(0.966226\pi\)
\(132\) 0 0
\(133\) −91113.6 −0.446636
\(134\) 0 0
\(135\) 70774.8 + 208215.i 0.334229 + 0.983281i
\(136\) 0 0
\(137\) 196186.i 0.893029i −0.894776 0.446515i \(-0.852665\pi\)
0.894776 0.446515i \(-0.147335\pi\)
\(138\) 0 0
\(139\) 79188.4i 0.347636i −0.984778 0.173818i \(-0.944390\pi\)
0.984778 0.173818i \(-0.0556104\pi\)
\(140\) 0 0
\(141\) 185377.i 0.785251i
\(142\) 0 0
\(143\) 120307.i 0.491985i
\(144\) 0 0
\(145\) 171628. 58338.5i 0.677905 0.230428i
\(146\) 0 0
\(147\) 96802.2 0.369481
\(148\) 0 0
\(149\) 3422.66i 0.0126299i 0.999980 + 0.00631493i \(0.00201012\pi\)
−0.999980 + 0.00631493i \(0.997990\pi\)
\(150\) 0 0
\(151\) 166179. 0.593107 0.296553 0.955016i \(-0.404163\pi\)
0.296553 + 0.955016i \(0.404163\pi\)
\(152\) 0 0
\(153\) 272500.i 0.941105i
\(154\) 0 0
\(155\) −17838.0 52478.3i −0.0596372 0.175449i
\(156\) 0 0
\(157\) 170561. 0.552244 0.276122 0.961123i \(-0.410951\pi\)
0.276122 + 0.961123i \(0.410951\pi\)
\(158\) 0 0
\(159\) −270107. −0.847312
\(160\) 0 0
\(161\) −346470. −1.05342
\(162\) 0 0
\(163\) −604504. −1.78209 −0.891046 0.453913i \(-0.850028\pi\)
−0.891046 + 0.453913i \(0.850028\pi\)
\(164\) 0 0
\(165\) 142741. 48519.3i 0.408167 0.138741i
\(166\) 0 0
\(167\) 395572.i 1.09758i −0.835962 0.548788i \(-0.815089\pi\)
0.835962 0.548788i \(-0.184911\pi\)
\(168\) 0 0
\(169\) −154914. −0.417229
\(170\) 0 0
\(171\) 141038.i 0.368847i
\(172\) 0 0
\(173\) 10014.5 0.0254397 0.0127199 0.999919i \(-0.495951\pi\)
0.0127199 + 0.999919i \(0.495951\pi\)
\(174\) 0 0
\(175\) −165187. 214911.i −0.407738 0.530472i
\(176\) 0 0
\(177\) 189435.i 0.454493i
\(178\) 0 0
\(179\) 830246.i 1.93675i 0.249496 + 0.968376i \(0.419735\pi\)
−0.249496 + 0.968376i \(0.580265\pi\)
\(180\) 0 0
\(181\) 324055.i 0.735228i −0.929979 0.367614i \(-0.880175\pi\)
0.929979 0.367614i \(-0.119825\pi\)
\(182\) 0 0
\(183\) 369776.i 0.816227i
\(184\) 0 0
\(185\) −158682. 466832.i −0.340877 1.00284i
\(186\) 0 0
\(187\) 524908. 1.09769
\(188\) 0 0
\(189\) 341228.i 0.694848i
\(190\) 0 0
\(191\) −658765. −1.30661 −0.653307 0.757093i \(-0.726619\pi\)
−0.653307 + 0.757093i \(0.726619\pi\)
\(192\) 0 0
\(193\) 107546.i 0.207827i −0.994586 0.103914i \(-0.966863\pi\)
0.994586 0.103914i \(-0.0331366\pi\)
\(194\) 0 0
\(195\) −87264.5 256727.i −0.164343 0.483487i
\(196\) 0 0
\(197\) −834075. −1.53123 −0.765613 0.643301i \(-0.777564\pi\)
−0.765613 + 0.643301i \(0.777564\pi\)
\(198\) 0 0
\(199\) 168087. 0.300886 0.150443 0.988619i \(-0.451930\pi\)
0.150443 + 0.988619i \(0.451930\pi\)
\(200\) 0 0
\(201\) 438674. 0.765864
\(202\) 0 0
\(203\) −281269. −0.479050
\(204\) 0 0
\(205\) −101315. 298064.i −0.168380 0.495364i
\(206\) 0 0
\(207\) 536314.i 0.869949i
\(208\) 0 0
\(209\) −271677. −0.430217
\(210\) 0 0
\(211\) 344841.i 0.533228i −0.963803 0.266614i \(-0.914095\pi\)
0.963803 0.266614i \(-0.0859049\pi\)
\(212\) 0 0
\(213\) 744445. 1.12430
\(214\) 0 0
\(215\) −31941.8 93970.9i −0.0471264 0.138643i
\(216\) 0 0
\(217\) 86002.8i 0.123983i
\(218\) 0 0
\(219\) 33957.4i 0.0478437i
\(220\) 0 0
\(221\) 944073.i 1.30024i
\(222\) 0 0
\(223\) 1.19367e6i 1.60739i −0.595040 0.803696i \(-0.702864\pi\)
0.595040 0.803696i \(-0.297136\pi\)
\(224\) 0 0
\(225\) 332668. 255699.i 0.438081 0.336723i
\(226\) 0 0
\(227\) −308573. −0.397460 −0.198730 0.980054i \(-0.563682\pi\)
−0.198730 + 0.980054i \(0.563682\pi\)
\(228\) 0 0
\(229\) 659870.i 0.831514i −0.909476 0.415757i \(-0.863517\pi\)
0.909476 0.415757i \(-0.136483\pi\)
\(230\) 0 0
\(231\) −233927. −0.288437
\(232\) 0 0
\(233\) 724262.i 0.873988i 0.899464 + 0.436994i \(0.143957\pi\)
−0.899464 + 0.436994i \(0.856043\pi\)
\(234\) 0 0
\(235\) 940930. 319834.i 1.11144 0.377793i
\(236\) 0 0
\(237\) 878300. 1.01572
\(238\) 0 0
\(239\) −1.56003e6 −1.76661 −0.883303 0.468803i \(-0.844685\pi\)
−0.883303 + 0.468803i \(0.844685\pi\)
\(240\) 0 0
\(241\) 1.12357e6 1.24612 0.623058 0.782176i \(-0.285890\pi\)
0.623058 + 0.782176i \(0.285890\pi\)
\(242\) 0 0
\(243\) 868416. 0.943436
\(244\) 0 0
\(245\) −167014. 491345.i −0.177762 0.522963i
\(246\) 0 0
\(247\) 488625.i 0.509605i
\(248\) 0 0
\(249\) −824083. −0.842311
\(250\) 0 0
\(251\) 525339.i 0.526327i −0.964751 0.263163i \(-0.915234\pi\)
0.964751 0.263163i \(-0.0847659\pi\)
\(252\) 0 0
\(253\) −1.03308e6 −1.01469
\(254\) 0 0
\(255\) −1.12011e6 + 380740.i −1.07873 + 0.366673i
\(256\) 0 0
\(257\) 788671.i 0.744840i −0.928064 0.372420i \(-0.878528\pi\)
0.928064 0.372420i \(-0.121472\pi\)
\(258\) 0 0
\(259\) 765056.i 0.708670i
\(260\) 0 0
\(261\) 435386.i 0.395616i
\(262\) 0 0
\(263\) 776592.i 0.692315i −0.938176 0.346157i \(-0.887486\pi\)
0.938176 0.346157i \(-0.112514\pi\)
\(264\) 0 0
\(265\) 466019. + 1.37100e6i 0.407652 + 1.19929i
\(266\) 0 0
\(267\) −679629. −0.583436
\(268\) 0 0
\(269\) 1.08192e6i 0.911620i −0.890077 0.455810i \(-0.849350\pi\)
0.890077 0.455810i \(-0.150650\pi\)
\(270\) 0 0
\(271\) −1.47594e6 −1.22081 −0.610403 0.792091i \(-0.708992\pi\)
−0.610403 + 0.792091i \(0.708992\pi\)
\(272\) 0 0
\(273\) 420730.i 0.341662i
\(274\) 0 0
\(275\) −492545. 640807.i −0.392748 0.510970i
\(276\) 0 0
\(277\) 1.51985e6 1.19015 0.595076 0.803670i \(-0.297122\pi\)
0.595076 + 0.803670i \(0.297122\pi\)
\(278\) 0 0
\(279\) −133127. −0.102389
\(280\) 0 0
\(281\) 26579.0 0.0200804 0.0100402 0.999950i \(-0.496804\pi\)
0.0100402 + 0.999950i \(0.496804\pi\)
\(282\) 0 0
\(283\) −1.44903e6 −1.07551 −0.537753 0.843102i \(-0.680727\pi\)
−0.537753 + 0.843102i \(0.680727\pi\)
\(284\) 0 0
\(285\) 579739. 197060.i 0.422786 0.143710i
\(286\) 0 0
\(287\) 488474.i 0.350055i
\(288\) 0 0
\(289\) −2.69919e6 −1.90103
\(290\) 0 0
\(291\) 354300.i 0.245267i
\(292\) 0 0
\(293\) 2.00717e6 1.36589 0.682944 0.730470i \(-0.260699\pi\)
0.682944 + 0.730470i \(0.260699\pi\)
\(294\) 0 0
\(295\) 961527. 326835.i 0.643290 0.218662i
\(296\) 0 0
\(297\) 1.01745e6i 0.669304i
\(298\) 0 0
\(299\) 1.85805e6i 1.20193i
\(300\) 0 0
\(301\) 154002.i 0.0979737i
\(302\) 0 0
\(303\) 1.12504e6i 0.703981i
\(304\) 0 0
\(305\) 1.87689e6 637979.i 1.15529 0.392696i
\(306\) 0 0
\(307\) 115077. 0.0696854 0.0348427 0.999393i \(-0.488907\pi\)
0.0348427 + 0.999393i \(0.488907\pi\)
\(308\) 0 0
\(309\) 240335.i 0.143192i
\(310\) 0 0
\(311\) 1.24273e6 0.728580 0.364290 0.931286i \(-0.381312\pi\)
0.364290 + 0.931286i \(0.381312\pi\)
\(312\) 0 0
\(313\) 2.22445e6i 1.28340i −0.766956 0.641700i \(-0.778230\pi\)
0.766956 0.641700i \(-0.221770\pi\)
\(314\) 0 0
\(315\) −616404. + 209523.i −0.350017 + 0.118975i
\(316\) 0 0
\(317\) −745432. −0.416639 −0.208319 0.978061i \(-0.566799\pi\)
−0.208319 + 0.978061i \(0.566799\pi\)
\(318\) 0 0
\(319\) −838670. −0.461439
\(320\) 0 0
\(321\) −751775. −0.407216
\(322\) 0 0
\(323\) 2.13190e6 1.13700
\(324\) 0 0
\(325\) −1.15252e6 + 885867.i −0.605260 + 0.465222i
\(326\) 0 0
\(327\) 1.85182e6i 0.957701i
\(328\) 0 0
\(329\) −1.54202e6 −0.785416
\(330\) 0 0
\(331\) 547701.i 0.274773i 0.990518 + 0.137386i \(0.0438702\pi\)
−0.990518 + 0.137386i \(0.956130\pi\)
\(332\) 0 0
\(333\) −1.18426e6 −0.585243
\(334\) 0 0
\(335\) −756849. 2.22660e6i −0.368466 1.08400i
\(336\) 0 0
\(337\) 3.59535e6i 1.72451i 0.506472 + 0.862257i \(0.330949\pi\)
−0.506472 + 0.862257i \(0.669051\pi\)
\(338\) 0 0
\(339\) 1.53610e6i 0.725972i
\(340\) 0 0
\(341\) 256438.i 0.119425i
\(342\) 0 0
\(343\) 2.26305e6i 1.03863i
\(344\) 0 0
\(345\) 2.20452e6 749345.i 0.997166 0.338949i
\(346\) 0 0
\(347\) 1.14196e6 0.509130 0.254565 0.967056i \(-0.418068\pi\)
0.254565 + 0.967056i \(0.418068\pi\)
\(348\) 0 0
\(349\) 1.98347e6i 0.871690i 0.900022 + 0.435845i \(0.143550\pi\)
−0.900022 + 0.435845i \(0.856450\pi\)
\(350\) 0 0
\(351\) −1.82994e6 −0.792810
\(352\) 0 0
\(353\) 1.33021e6i 0.568177i −0.958798 0.284088i \(-0.908309\pi\)
0.958798 0.284088i \(-0.0916909\pi\)
\(354\) 0 0
\(355\) −1.28440e6 3.77862e6i −0.540916 1.59134i
\(356\) 0 0
\(357\) 1.83567e6 0.762297
\(358\) 0 0
\(359\) 4.28909e6 1.75642 0.878212 0.478272i \(-0.158737\pi\)
0.878212 + 0.478272i \(0.158737\pi\)
\(360\) 0 0
\(361\) 1.37269e6 0.554376
\(362\) 0 0
\(363\) 981854. 0.391093
\(364\) 0 0
\(365\) 172360. 58587.2i 0.0677179 0.0230181i
\(366\) 0 0
\(367\) 3.61572e6i 1.40130i −0.713507 0.700648i \(-0.752894\pi\)
0.713507 0.700648i \(-0.247106\pi\)
\(368\) 0 0
\(369\) −756127. −0.289087
\(370\) 0 0
\(371\) 2.24683e6i 0.847491i
\(372\) 0 0
\(373\) −2.58778e6 −0.963064 −0.481532 0.876428i \(-0.659920\pi\)
−0.481532 + 0.876428i \(0.659920\pi\)
\(374\) 0 0
\(375\) 1.51586e6 + 1.01017e6i 0.556649 + 0.370950i
\(376\) 0 0
\(377\) 1.50839e6i 0.546588i
\(378\) 0 0
\(379\) 3.70716e6i 1.32570i 0.748754 + 0.662848i \(0.230652\pi\)
−0.748754 + 0.662848i \(0.769348\pi\)
\(380\) 0 0
\(381\) 1.45864e6i 0.514797i
\(382\) 0 0
\(383\) 1.49277e6i 0.519990i −0.965610 0.259995i \(-0.916279\pi\)
0.965610 0.259995i \(-0.0837209\pi\)
\(384\) 0 0
\(385\) 403597. + 1.18736e6i 0.138770 + 0.408253i
\(386\) 0 0
\(387\) −238385. −0.0809099
\(388\) 0 0
\(389\) 1.73759e6i 0.582200i 0.956693 + 0.291100i \(0.0940213\pi\)
−0.956693 + 0.291100i \(0.905979\pi\)
\(390\) 0 0
\(391\) 8.10681e6 2.68169
\(392\) 0 0
\(393\) 433822.i 0.141687i
\(394\) 0 0
\(395\) −1.51534e6 4.45804e6i −0.488673 1.43764i
\(396\) 0 0
\(397\) −4.65675e6 −1.48288 −0.741441 0.671018i \(-0.765857\pi\)
−0.741441 + 0.671018i \(0.765857\pi\)
\(398\) 0 0
\(399\) −950090. −0.298767
\(400\) 0 0
\(401\) 3.42492e6 1.06363 0.531814 0.846861i \(-0.321511\pi\)
0.531814 + 0.846861i \(0.321511\pi\)
\(402\) 0 0
\(403\) 461217. 0.141463
\(404\) 0 0
\(405\) 151026. + 444310.i 0.0457525 + 0.134601i
\(406\) 0 0
\(407\) 2.28120e6i 0.682617i
\(408\) 0 0
\(409\) −4.66454e6 −1.37880 −0.689399 0.724382i \(-0.742125\pi\)
−0.689399 + 0.724382i \(0.742125\pi\)
\(410\) 0 0
\(411\) 2.04573e6i 0.597371i
\(412\) 0 0
\(413\) −1.57577e6 −0.454589
\(414\) 0 0
\(415\) 1.42180e6 + 4.18285e6i 0.405246 + 1.19221i
\(416\) 0 0
\(417\) 825740.i 0.232543i
\(418\) 0 0
\(419\) 4.50348e6i 1.25318i 0.779349 + 0.626590i \(0.215550\pi\)
−0.779349 + 0.626590i \(0.784450\pi\)
\(420\) 0 0
\(421\) 5.44553e6i 1.49739i 0.662915 + 0.748694i \(0.269319\pi\)
−0.662915 + 0.748694i \(0.730681\pi\)
\(422\) 0 0
\(423\) 2.38695e6i 0.648623i
\(424\) 0 0
\(425\) 3.86509e6 + 5.02853e6i 1.03798 + 1.35042i
\(426\) 0 0
\(427\) −3.07590e6 −0.816399
\(428\) 0 0
\(429\) 1.25451e6i 0.329101i
\(430\) 0 0
\(431\) −1.34161e6 −0.347884 −0.173942 0.984756i \(-0.555650\pi\)
−0.173942 + 0.984756i \(0.555650\pi\)
\(432\) 0 0
\(433\) 3.17119e6i 0.812834i −0.913688 0.406417i \(-0.866778\pi\)
0.913688 0.406417i \(-0.133222\pi\)
\(434\) 0 0
\(435\) 1.78966e6 608327.i 0.453469 0.154139i
\(436\) 0 0
\(437\) −4.19585e6 −1.05103
\(438\) 0 0
\(439\) 7.68194e6 1.90243 0.951217 0.308524i \(-0.0998350\pi\)
0.951217 + 0.308524i \(0.0998350\pi\)
\(440\) 0 0
\(441\) −1.24644e6 −0.305194
\(442\) 0 0
\(443\) 5.10003e6 1.23471 0.617353 0.786686i \(-0.288205\pi\)
0.617353 + 0.786686i \(0.288205\pi\)
\(444\) 0 0
\(445\) 1.17257e6 + 3.44963e6i 0.280698 + 0.825796i
\(446\) 0 0
\(447\) 35689.9i 0.00844844i
\(448\) 0 0
\(449\) −5.82882e6 −1.36447 −0.682237 0.731131i \(-0.738993\pi\)
−0.682237 + 0.731131i \(0.738993\pi\)
\(450\) 0 0
\(451\) 1.45650e6i 0.337186i
\(452\) 0 0
\(453\) 1.73283e6 0.396745
\(454\) 0 0
\(455\) 2.13552e6 725890.i 0.483588 0.164378i
\(456\) 0 0
\(457\) 8.68037e6i 1.94423i −0.234505 0.972115i \(-0.575347\pi\)
0.234505 0.972115i \(-0.424653\pi\)
\(458\) 0 0
\(459\) 7.98414e6i 1.76887i
\(460\) 0 0
\(461\) 591360.i 0.129598i 0.997898 + 0.0647992i \(0.0206407\pi\)
−0.997898 + 0.0647992i \(0.979359\pi\)
\(462\) 0 0
\(463\) 1.01246e6i 0.219496i 0.993959 + 0.109748i \(0.0350044\pi\)
−0.993959 + 0.109748i \(0.964996\pi\)
\(464\) 0 0
\(465\) −186006. 547219.i −0.0398929 0.117362i
\(466\) 0 0
\(467\) −2.51182e6 −0.532962 −0.266481 0.963840i \(-0.585861\pi\)
−0.266481 + 0.963840i \(0.585861\pi\)
\(468\) 0 0
\(469\) 3.64901e6i 0.766025i
\(470\) 0 0
\(471\) 1.77853e6 0.369411
\(472\) 0 0
\(473\) 459193.i 0.0943719i
\(474\) 0 0
\(475\) −2.00046e6 2.60262e6i −0.406814 0.529270i
\(476\) 0 0
\(477\) 3.47795e6 0.699886
\(478\) 0 0
\(479\) −4.99715e6 −0.995139 −0.497569 0.867424i \(-0.665774\pi\)
−0.497569 + 0.867424i \(0.665774\pi\)
\(480\) 0 0
\(481\) 4.10285e6 0.808580
\(482\) 0 0
\(483\) −3.61283e6 −0.704660
\(484\) 0 0
\(485\) −1.79834e6 + 611279.i −0.347151 + 0.118001i
\(486\) 0 0
\(487\) 173192.i 0.0330907i −0.999863 0.0165454i \(-0.994733\pi\)
0.999863 0.0165454i \(-0.00526679\pi\)
\(488\) 0 0
\(489\) −6.30348e6 −1.19209
\(490\) 0 0
\(491\) 9.01553e6i 1.68767i −0.536603 0.843835i \(-0.680293\pi\)
0.536603 0.843835i \(-0.319707\pi\)
\(492\) 0 0
\(493\) 6.58120e6 1.21952
\(494\) 0 0
\(495\) −1.83796e6 + 624743.i −0.337149 + 0.114601i
\(496\) 0 0
\(497\) 6.19250e6i 1.12454i
\(498\) 0 0
\(499\) 6.77675e6i 1.21834i 0.793038 + 0.609172i \(0.208498\pi\)
−0.793038 + 0.609172i \(0.791502\pi\)
\(500\) 0 0
\(501\) 4.12484e6i 0.734197i
\(502\) 0 0
\(503\) 1.01435e7i 1.78758i 0.448482 + 0.893792i \(0.351965\pi\)
−0.448482 + 0.893792i \(0.648035\pi\)
\(504\) 0 0
\(505\) 5.71042e6 1.94104e6i 0.996414 0.338693i
\(506\) 0 0
\(507\) −1.61537e6 −0.279096
\(508\) 0 0
\(509\) 530805.i 0.0908114i −0.998969 0.0454057i \(-0.985542\pi\)
0.998969 0.0454057i \(-0.0144580\pi\)
\(510\) 0 0
\(511\) −282467. −0.0478537
\(512\) 0 0
\(513\) 4.13236e6i 0.693274i
\(514\) 0 0
\(515\) 1.21988e6 414652.i 0.202675 0.0688916i
\(516\) 0 0
\(517\) −4.59790e6 −0.756542
\(518\) 0 0
\(519\) 104426. 0.0170173
\(520\) 0 0
\(521\) 4.22572e6 0.682034 0.341017 0.940057i \(-0.389229\pi\)
0.341017 + 0.940057i \(0.389229\pi\)
\(522\) 0 0
\(523\) 6.69056e6 1.06957 0.534784 0.844989i \(-0.320393\pi\)
0.534784 + 0.844989i \(0.320393\pi\)
\(524\) 0 0
\(525\) −1.72249e6 2.24099e6i −0.272747 0.354847i
\(526\) 0 0
\(527\) 2.01232e6i 0.315624i
\(528\) 0 0
\(529\) −9.51887e6 −1.47892
\(530\) 0 0
\(531\) 2.43920e6i 0.375415i
\(532\) 0 0
\(533\) 2.61959e6 0.399407
\(534\) 0 0
\(535\) 1.29705e6 + 3.81583e6i 0.195917 + 0.576374i
\(536\) 0 0
\(537\) 8.65741e6i 1.29554i
\(538\) 0 0
\(539\) 2.40098e6i 0.355973i
\(540\) 0 0
\(541\) 5.30697e6i 0.779567i 0.920906 + 0.389784i \(0.127450\pi\)
−0.920906 + 0.389784i \(0.872550\pi\)
\(542\) 0 0
\(543\) 3.37909e6i 0.491813i
\(544\) 0 0
\(545\) 9.39941e6 3.19497e6i 1.35553 0.460761i
\(546\) 0 0
\(547\) 7.16772e6 1.02427 0.512133 0.858906i \(-0.328855\pi\)
0.512133 + 0.858906i \(0.328855\pi\)
\(548\) 0 0
\(549\) 4.76130e6i 0.674209i
\(550\) 0 0
\(551\) −3.40624e6 −0.477965
\(552\) 0 0
\(553\) 7.30595e6i 1.01593i
\(554\) 0 0
\(555\) −1.65466e6 4.86791e6i −0.228022 0.670826i
\(556\) 0 0
\(557\) 9.38525e6 1.28176 0.640881 0.767640i \(-0.278569\pi\)
0.640881 + 0.767640i \(0.278569\pi\)
\(558\) 0 0
\(559\) 825882. 0.111786
\(560\) 0 0
\(561\) 5.47349e6 0.734273
\(562\) 0 0
\(563\) −1.01789e7 −1.35342 −0.676708 0.736252i \(-0.736594\pi\)
−0.676708 + 0.736252i \(0.736594\pi\)
\(564\) 0 0
\(565\) 7.79686e6 2.65025e6i 1.02754 0.349273i
\(566\) 0 0
\(567\) 728146.i 0.0951175i
\(568\) 0 0
\(569\) −8.24155e6 −1.06716 −0.533578 0.845751i \(-0.679153\pi\)
−0.533578 + 0.845751i \(0.679153\pi\)
\(570\) 0 0
\(571\) 4.37997e6i 0.562187i −0.959680 0.281094i \(-0.909303\pi\)
0.959680 0.281094i \(-0.0906972\pi\)
\(572\) 0 0
\(573\) −6.86930e6 −0.874029
\(574\) 0 0
\(575\) −7.60699e6 9.89678e6i −0.959496 1.24832i
\(576\) 0 0
\(577\) 3.21889e6i 0.402501i 0.979540 + 0.201250i \(0.0645005\pi\)
−0.979540 + 0.201250i \(0.935499\pi\)
\(578\) 0 0
\(579\) 1.12144e6i 0.139021i
\(580\) 0 0
\(581\) 6.85495e6i 0.842488i
\(582\) 0 0
\(583\) 6.69945e6i 0.816334i
\(584\) 0 0
\(585\) 1.12363e6 + 3.30566e6i 0.135748 + 0.399363i
\(586\) 0 0
\(587\) 9.75640e6 1.16868 0.584338 0.811510i \(-0.301354\pi\)
0.584338 + 0.811510i \(0.301354\pi\)
\(588\) 0 0
\(589\) 1.04152e6i 0.123702i
\(590\) 0 0
\(591\) −8.69734e6 −1.02428
\(592\) 0 0
\(593\) 299475.i 0.0349723i −0.999847 0.0174861i \(-0.994434\pi\)
0.999847 0.0174861i \(-0.00556630\pi\)
\(594\) 0 0
\(595\) −3.16710e6 9.31742e6i −0.366750 1.07895i
\(596\) 0 0
\(597\) 1.75274e6 0.201271
\(598\) 0 0
\(599\) −1.03103e7 −1.17410 −0.587051 0.809550i \(-0.699711\pi\)
−0.587051 + 0.809550i \(0.699711\pi\)
\(600\) 0 0
\(601\) 4.99550e6 0.564148 0.282074 0.959393i \(-0.408978\pi\)
0.282074 + 0.959393i \(0.408978\pi\)
\(602\) 0 0
\(603\) −5.64844e6 −0.632609
\(604\) 0 0
\(605\) −1.69400e6 4.98365e6i −0.188159 0.553553i
\(606\) 0 0
\(607\) 9.01015e6i 0.992568i 0.868160 + 0.496284i \(0.165302\pi\)
−0.868160 + 0.496284i \(0.834698\pi\)
\(608\) 0 0
\(609\) −2.93294e6 −0.320449
\(610\) 0 0
\(611\) 8.26956e6i 0.896147i
\(612\) 0 0
\(613\) −1.84050e7 −1.97827 −0.989133 0.147022i \(-0.953031\pi\)
−0.989133 + 0.147022i \(0.953031\pi\)
\(614\) 0 0
\(615\) −1.05647e6 3.10807e6i −0.112634 0.331362i
\(616\) 0 0
\(617\) 1.78493e7i 1.88759i −0.330534 0.943794i \(-0.607229\pi\)
0.330534 0.943794i \(-0.392771\pi\)
\(618\) 0 0
\(619\) 1.63628e7i 1.71645i 0.513271 + 0.858226i \(0.328433\pi\)
−0.513271 + 0.858226i \(0.671567\pi\)
\(620\) 0 0
\(621\) 1.57138e7i 1.63513i
\(622\) 0 0
\(623\) 5.65334e6i 0.583559i
\(624\) 0 0
\(625\) 2.51204e6 9.43701e6i 0.257233 0.966349i
\(626\) 0 0
\(627\) −2.83292e6 −0.287783
\(628\) 0 0
\(629\) 1.79010e7i 1.80406i
\(630\) 0 0
\(631\) 102581. 0.0102564 0.00512819 0.999987i \(-0.498368\pi\)
0.00512819 + 0.999987i \(0.498368\pi\)
\(632\) 0 0
\(633\) 3.59584e6i 0.356690i
\(634\) 0 0
\(635\) 7.40372e6 2.51661e6i 0.728644 0.247675i
\(636\) 0 0
\(637\) 4.31828e6 0.421660
\(638\) 0 0
\(639\) −9.58561e6 −0.928683
\(640\) 0 0
\(641\) −7.56255e6 −0.726981 −0.363490 0.931598i \(-0.618415\pi\)
−0.363490 + 0.931598i \(0.618415\pi\)
\(642\) 0 0
\(643\) 8.63176e6 0.823326 0.411663 0.911336i \(-0.364948\pi\)
0.411663 + 0.911336i \(0.364948\pi\)
\(644\) 0 0
\(645\) −333074. 979884.i −0.0315241 0.0927418i
\(646\) 0 0
\(647\) 1.19255e7i 1.11999i −0.828495 0.559996i \(-0.810803\pi\)
0.828495 0.559996i \(-0.189197\pi\)
\(648\) 0 0
\(649\) −4.69855e6 −0.437877
\(650\) 0 0
\(651\) 896796.i 0.0829357i
\(652\) 0 0
\(653\) 1.84123e7 1.68976 0.844881 0.534954i \(-0.179671\pi\)
0.844881 + 0.534954i \(0.179671\pi\)
\(654\) 0 0
\(655\) 2.20197e6 748478.i 0.200544 0.0681672i
\(656\) 0 0
\(657\) 437242.i 0.0395192i
\(658\) 0 0
\(659\) 9.96887e6i 0.894196i 0.894485 + 0.447098i \(0.147542\pi\)
−0.894485 + 0.447098i \(0.852458\pi\)
\(660\) 0 0
\(661\) 1.71610e6i 0.152771i −0.997078 0.0763853i \(-0.975662\pi\)
0.997078 0.0763853i \(-0.0243379\pi\)
\(662\) 0 0
\(663\) 9.84435e6i 0.869768i
\(664\) 0 0
\(665\) 1.63920e6 + 4.82243e6i 0.143740 + 0.422875i
\(666\) 0 0
\(667\) −1.29526e7 −1.12731
\(668\) 0 0
\(669\) 1.24470e7i 1.07523i
\(670\) 0 0
\(671\) −9.17153e6 −0.786385
\(672\) 0 0
\(673\) 2.09946e7i 1.78678i 0.449286 + 0.893388i \(0.351679\pi\)
−0.449286 + 0.893388i \(0.648321\pi\)
\(674\) 0 0
\(675\) 9.74704e6 7.49189e6i 0.823404 0.632895i
\(676\) 0 0
\(677\) 6.74843e6 0.565889 0.282944 0.959136i \(-0.408689\pi\)
0.282944 + 0.959136i \(0.408689\pi\)
\(678\) 0 0
\(679\) 2.94717e6 0.245319
\(680\) 0 0
\(681\) −3.21766e6 −0.265872
\(682\) 0 0
\(683\) −2.05079e7 −1.68217 −0.841085 0.540902i \(-0.818083\pi\)
−0.841085 + 0.540902i \(0.818083\pi\)
\(684\) 0 0
\(685\) −1.03836e7 + 3.52952e6i −0.845518 + 0.287402i
\(686\) 0 0
\(687\) 6.88081e6i 0.556222i
\(688\) 0 0
\(689\) −1.20493e7 −0.966972
\(690\) 0 0
\(691\) 7.55462e6i 0.601891i −0.953641 0.300945i \(-0.902698\pi\)
0.953641 0.300945i \(-0.0973022\pi\)
\(692\) 0 0
\(693\) 3.01209e6 0.238251
\(694\) 0 0
\(695\) −4.19126e6 + 1.42466e6i −0.329141 + 0.111879i
\(696\) 0 0
\(697\) 1.14294e7i 0.891135i
\(698\) 0 0
\(699\) 7.55226e6i 0.584634i
\(700\) 0 0
\(701\) 4.32288e6i 0.332260i −0.986104 0.166130i \(-0.946873\pi\)
0.986104 0.166130i \(-0.0531272\pi\)
\(702\) 0 0
\(703\) 9.26504e6i 0.707064i
\(704\) 0 0
\(705\) 9.81157e6 3.33507e6i 0.743474 0.252716i
\(706\) 0 0
\(707\) −9.35838e6 −0.704129
\(708\) 0 0
\(709\) 2.01901e7i 1.50843i 0.656630 + 0.754213i \(0.271981\pi\)
−0.656630 + 0.754213i \(0.728019\pi\)
\(710\) 0 0
\(711\) −1.13091e7 −0.838988
\(712\) 0 0
\(713\) 3.96049e6i 0.291760i
\(714\) 0 0
\(715\) 6.36758e6 2.16442e6i 0.465810 0.158335i
\(716\) 0 0
\(717\) −1.62673e7 −1.18173
\(718\) 0 0
\(719\) −5.05198e6 −0.364451 −0.182226 0.983257i \(-0.558330\pi\)
−0.182226 + 0.983257i \(0.558330\pi\)
\(720\) 0 0
\(721\) −1.99917e6 −0.143223
\(722\) 0 0
\(723\) 1.17161e7 0.833560
\(724\) 0 0
\(725\) −6.17544e6 8.03433e6i −0.436338 0.567681i
\(726\) 0 0
\(727\) 1.58378e7i 1.11137i 0.831393 + 0.555685i \(0.187544\pi\)
−0.831393 + 0.555685i \(0.812456\pi\)
\(728\) 0 0
\(729\) 1.10953e7 0.773253
\(730\) 0 0
\(731\) 3.60338e6i 0.249411i
\(732\) 0 0
\(733\) 8.41498e6 0.578487 0.289243 0.957256i \(-0.406596\pi\)
0.289243 + 0.957256i \(0.406596\pi\)
\(734\) 0 0
\(735\) −1.74154e6 5.12351e6i −0.118909 0.349824i
\(736\) 0 0
\(737\) 1.08804e7i 0.737864i
\(738\) 0 0
\(739\) 5.98826e6i 0.403357i −0.979452 0.201679i \(-0.935360\pi\)
0.979452 0.201679i \(-0.0646397\pi\)
\(740\) 0 0
\(741\) 5.09515e6i 0.340888i
\(742\) 0 0
\(743\) 1.00035e7i 0.664783i 0.943141 + 0.332392i \(0.107856\pi\)
−0.943141 + 0.332392i \(0.892144\pi\)
\(744\) 0 0
\(745\) 181153. 61576.2i 0.0119579 0.00406464i
\(746\) 0 0
\(747\) 1.06110e7 0.695755
\(748\) 0 0
\(749\) 6.25347e6i 0.407302i
\(750\) 0 0
\(751\) 2.35108e7 1.52114 0.760568 0.649259i \(-0.224921\pi\)
0.760568 + 0.649259i \(0.224921\pi\)
\(752\) 0 0
\(753\) 5.47799e6i 0.352074i
\(754\) 0 0
\(755\) −2.98968e6 8.79544e6i −0.190878 0.561552i
\(756\) 0 0
\(757\) 1.80703e7 1.14611 0.573055 0.819517i \(-0.305758\pi\)
0.573055 + 0.819517i \(0.305758\pi\)
\(758\) 0 0
\(759\) −1.07725e7 −0.678754
\(760\) 0 0
\(761\) 6.53987e6 0.409362 0.204681 0.978829i \(-0.434384\pi\)
0.204681 + 0.978829i \(0.434384\pi\)
\(762\) 0 0
\(763\) −1.54040e7 −0.957903
\(764\) 0 0
\(765\) 1.44228e7 4.90248e6i 0.891037 0.302874i
\(766\) 0 0
\(767\) 8.45058e6i 0.518678i
\(768\) 0 0
\(769\) 1.15910e7 0.706814 0.353407 0.935470i \(-0.385023\pi\)
0.353407 + 0.935470i \(0.385023\pi\)
\(770\) 0 0
\(771\) 8.22389e6i 0.498243i
\(772\) 0 0
\(773\) 1.50928e7 0.908490 0.454245 0.890877i \(-0.349909\pi\)
0.454245 + 0.890877i \(0.349909\pi\)
\(774\) 0 0
\(775\) −2.45663e6 + 1.88825e6i −0.146922 + 0.112929i
\(776\) 0 0
\(777\) 7.97765e6i 0.474048i
\(778\) 0 0
\(779\) 5.91555e6i 0.349262i
\(780\) 0 0
\(781\) 1.84644e7i 1.08320i
\(782\) 0 0
\(783\) 1.27566e7i 0.743587i
\(784\) 0 0
\(785\) −3.06852e6 9.02740e6i −0.177728 0.522864i
\(786\) 0 0
\(787\) 2.71625e7 1.56327 0.781633 0.623739i \(-0.214387\pi\)
0.781633 + 0.623739i \(0.214387\pi\)
\(788\) 0 0
\(789\) 8.09794e6i 0.463107i
\(790\) 0 0
\(791\) −1.27777e7 −0.726124
\(792\) 0 0
\(793\) 1.64955e7i 0.931497i
\(794\) 0 0
\(795\) 4.85943e6 + 1.42961e7i 0.272689 + 0.802234i
\(796\) 0 0
\(797\) −1.46344e7 −0.816073 −0.408036 0.912966i \(-0.633786\pi\)
−0.408036 + 0.912