Properties

Label 320.6.f.b.289.1
Level 320
Weight 6
Character 320.289
Analytic conductor 51.323
Analytic rank 0
Dimension 8
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(51.3228223402\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.73499483897856.45
Defining polynomial: \(x^{8} - 3721 x^{4} + 13845841\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.1
Root \(-2.02144 + 7.54412i\) of defining polynomial
Character \(\chi\) \(=\) 320.289
Dual form 320.6.f.b.289.2

$q$-expansion

\(f(q)\) \(=\) \(q-19.1311 q^{3} +(-55.2268 - 8.66025i) q^{5} -121.499i q^{7} +123.000 q^{9} +O(q^{10})\) \(q-19.1311 q^{3} +(-55.2268 - 8.66025i) q^{5} -121.499i q^{7} +123.000 q^{9} +298.000i q^{11} +485.996 q^{13} +(1056.55 + 165.680i) q^{15} -420.885i q^{17} +2574.00i q^{19} +2324.41i q^{21} -717.948i q^{23} +(2975.00 + 956.556i) q^{25} +2295.74 q^{27} +3734.30i q^{29} -6228.45 q^{31} -5701.08i q^{33} +(-1052.21 + 6710.00i) q^{35} +5721.50 q^{37} -9297.65 q^{39} +11396.0 q^{41} -19150.3 q^{43} +(-6792.90 - 1065.21i) q^{45} +2286.39i q^{47} +2045.00 q^{49} +8052.00i q^{51} +17230.8 q^{53} +(2580.76 - 16457.6i) q^{55} -49243.5i q^{57} -16378.0i q^{59} -48736.4i q^{61} -14944.4i q^{63} +(-26840.0 - 4208.85i) q^{65} -8398.56 q^{67} +13735.2i q^{69} +29091.5 q^{71} -420.885i q^{73} +(-56915.1 - 18300.0i) q^{75} +36206.7 q^{77} +31170.0 q^{79} -73809.0 q^{81} -106273. q^{83} +(-3644.97 + 23244.1i) q^{85} -71441.4i q^{87} -99362.0 q^{89} -59048.0i q^{91} +119157. q^{93} +(22291.5 - 142154. i) q^{95} -180330. i q^{97} +36654.0i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 984q^{9} + O(q^{10}) \) \( 8q + 984q^{9} + 23800q^{25} + 91168q^{41} + 16360q^{49} - 214720q^{65} - 590472q^{81} - 794896q^{89} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −19.1311 −1.22726 −0.613631 0.789593i \(-0.710292\pi\)
−0.613631 + 0.789593i \(0.710292\pi\)
\(4\) 0 0
\(5\) −55.2268 8.66025i −0.987927 0.154919i
\(6\) 0 0
\(7\) 121.499i 0.937190i −0.883413 0.468595i \(-0.844760\pi\)
0.883413 0.468595i \(-0.155240\pi\)
\(8\) 0 0
\(9\) 123.000 0.506173
\(10\) 0 0
\(11\) 298.000i 0.742565i 0.928520 + 0.371283i \(0.121082\pi\)
−0.928520 + 0.371283i \(0.878918\pi\)
\(12\) 0 0
\(13\) 485.996 0.797580 0.398790 0.917042i \(-0.369430\pi\)
0.398790 + 0.917042i \(0.369430\pi\)
\(14\) 0 0
\(15\) 1056.55 + 165.680i 1.21245 + 0.190127i
\(16\) 0 0
\(17\) 420.885i 0.353216i −0.984281 0.176608i \(-0.943487\pi\)
0.984281 0.176608i \(-0.0565126\pi\)
\(18\) 0 0
\(19\) 2574.00i 1.63578i 0.575376 + 0.817889i \(0.304856\pi\)
−0.575376 + 0.817889i \(0.695144\pi\)
\(20\) 0 0
\(21\) 2324.41i 1.15018i
\(22\) 0 0
\(23\) 717.948i 0.282992i −0.989939 0.141496i \(-0.954809\pi\)
0.989939 0.141496i \(-0.0451912\pi\)
\(24\) 0 0
\(25\) 2975.00 + 956.556i 0.952000 + 0.306098i
\(26\) 0 0
\(27\) 2295.74 0.606055
\(28\) 0 0
\(29\) 3734.30i 0.824545i 0.911061 + 0.412273i \(0.135265\pi\)
−0.911061 + 0.412273i \(0.864735\pi\)
\(30\) 0 0
\(31\) −6228.45 −1.16406 −0.582031 0.813167i \(-0.697742\pi\)
−0.582031 + 0.813167i \(0.697742\pi\)
\(32\) 0 0
\(33\) 5701.08i 0.911322i
\(34\) 0 0
\(35\) −1052.21 + 6710.00i −0.145189 + 0.925875i
\(36\) 0 0
\(37\) 5721.50 0.687077 0.343538 0.939139i \(-0.388374\pi\)
0.343538 + 0.939139i \(0.388374\pi\)
\(38\) 0 0
\(39\) −9297.65 −0.978840
\(40\) 0 0
\(41\) 11396.0 1.05875 0.529374 0.848388i \(-0.322427\pi\)
0.529374 + 0.848388i \(0.322427\pi\)
\(42\) 0 0
\(43\) −19150.3 −1.57944 −0.789721 0.613467i \(-0.789775\pi\)
−0.789721 + 0.613467i \(0.789775\pi\)
\(44\) 0 0
\(45\) −6792.90 1065.21i −0.500062 0.0784160i
\(46\) 0 0
\(47\) 2286.39i 0.150975i 0.997147 + 0.0754876i \(0.0240513\pi\)
−0.997147 + 0.0754876i \(0.975949\pi\)
\(48\) 0 0
\(49\) 2045.00 0.121675
\(50\) 0 0
\(51\) 8052.00i 0.433489i
\(52\) 0 0
\(53\) 17230.8 0.842587 0.421294 0.906924i \(-0.361576\pi\)
0.421294 + 0.906924i \(0.361576\pi\)
\(54\) 0 0
\(55\) 2580.76 16457.6i 0.115038 0.733600i
\(56\) 0 0
\(57\) 49243.5i 2.00753i
\(58\) 0 0
\(59\) 16378.0i 0.612535i −0.951946 0.306267i \(-0.900920\pi\)
0.951946 0.306267i \(-0.0990802\pi\)
\(60\) 0 0
\(61\) 48736.4i 1.67699i −0.544913 0.838493i \(-0.683437\pi\)
0.544913 0.838493i \(-0.316563\pi\)
\(62\) 0 0
\(63\) 14944.4i 0.474380i
\(64\) 0 0
\(65\) −26840.0 4208.85i −0.787951 0.123561i
\(66\) 0 0
\(67\) −8398.56 −0.228569 −0.114285 0.993448i \(-0.536458\pi\)
−0.114285 + 0.993448i \(0.536458\pi\)
\(68\) 0 0
\(69\) 13735.2i 0.347305i
\(70\) 0 0
\(71\) 29091.5 0.684890 0.342445 0.939538i \(-0.388745\pi\)
0.342445 + 0.939538i \(0.388745\pi\)
\(72\) 0 0
\(73\) 420.885i 0.00924392i −0.999989 0.00462196i \(-0.998529\pi\)
0.999989 0.00462196i \(-0.00147122\pi\)
\(74\) 0 0
\(75\) −56915.1 18300.0i −1.16835 0.375663i
\(76\) 0 0
\(77\) 36206.7 0.695924
\(78\) 0 0
\(79\) 31170.0 0.561913 0.280956 0.959721i \(-0.409348\pi\)
0.280956 + 0.959721i \(0.409348\pi\)
\(80\) 0 0
\(81\) −73809.0 −1.24996
\(82\) 0 0
\(83\) −106273. −1.69328 −0.846641 0.532164i \(-0.821379\pi\)
−0.846641 + 0.532164i \(0.821379\pi\)
\(84\) 0 0
\(85\) −3644.97 + 23244.1i −0.0547201 + 0.348952i
\(86\) 0 0
\(87\) 71441.4i 1.01193i
\(88\) 0 0
\(89\) −99362.0 −1.32967 −0.664837 0.746988i \(-0.731499\pi\)
−0.664837 + 0.746988i \(0.731499\pi\)
\(90\) 0 0
\(91\) 59048.0i 0.747484i
\(92\) 0 0
\(93\) 119157. 1.42861
\(94\) 0 0
\(95\) 22291.5 142154.i 0.253414 1.61603i
\(96\) 0 0
\(97\) 180330.i 1.94598i −0.230845 0.972991i \(-0.574149\pi\)
0.230845 0.972991i \(-0.425851\pi\)
\(98\) 0 0
\(99\) 36654.0i 0.375866i
\(100\) 0 0
\(101\) 136340.i 1.32990i 0.746886 + 0.664952i \(0.231548\pi\)
−0.746886 + 0.664952i \(0.768452\pi\)
\(102\) 0 0
\(103\) 98557.8i 0.915372i 0.889114 + 0.457686i \(0.151322\pi\)
−0.889114 + 0.457686i \(0.848678\pi\)
\(104\) 0 0
\(105\) 20130.0 128370.i 0.178185 1.13629i
\(106\) 0 0
\(107\) −107115. −0.904465 −0.452232 0.891900i \(-0.649372\pi\)
−0.452232 + 0.891900i \(0.649372\pi\)
\(108\) 0 0
\(109\) 234766.i 1.89264i −0.323230 0.946321i \(-0.604769\pi\)
0.323230 0.946321i \(-0.395231\pi\)
\(110\) 0 0
\(111\) −109459. −0.843224
\(112\) 0 0
\(113\) 27548.8i 0.202958i −0.994838 0.101479i \(-0.967642\pi\)
0.994838 0.101479i \(-0.0323575\pi\)
\(114\) 0 0
\(115\) −6217.62 + 39650.0i −0.0438409 + 0.279575i
\(116\) 0 0
\(117\) 59777.5 0.403713
\(118\) 0 0
\(119\) −51137.1 −0.331031
\(120\) 0 0
\(121\) 72247.0 0.448597
\(122\) 0 0
\(123\) −218018. −1.29936
\(124\) 0 0
\(125\) −156016. 78591.8i −0.893086 0.449886i
\(126\) 0 0
\(127\) 160986.i 0.885685i −0.896599 0.442842i \(-0.853970\pi\)
0.896599 0.442842i \(-0.146030\pi\)
\(128\) 0 0
\(129\) 366366. 1.93839
\(130\) 0 0
\(131\) 194590.i 0.990700i 0.868693 + 0.495350i \(0.164960\pi\)
−0.868693 + 0.495350i \(0.835040\pi\)
\(132\) 0 0
\(133\) 312738. 1.53303
\(134\) 0 0
\(135\) −126786. 19881.6i −0.598739 0.0938897i
\(136\) 0 0
\(137\) 26707.1i 0.121569i −0.998151 0.0607847i \(-0.980640\pi\)
0.998151 0.0607847i \(-0.0193603\pi\)
\(138\) 0 0
\(139\) 140690.i 0.617627i 0.951123 + 0.308813i \(0.0999319\pi\)
−0.951123 + 0.308813i \(0.900068\pi\)
\(140\) 0 0
\(141\) 43741.2i 0.185286i
\(142\) 0 0
\(143\) 144827.i 0.592255i
\(144\) 0 0
\(145\) 32340.0 206234.i 0.127738 0.814590i
\(146\) 0 0
\(147\) −39123.2 −0.149328
\(148\) 0 0
\(149\) 329343.i 1.21530i 0.794206 + 0.607648i \(0.207887\pi\)
−0.794206 + 0.607648i \(0.792113\pi\)
\(150\) 0 0
\(151\) 134282. 0.479266 0.239633 0.970864i \(-0.422973\pi\)
0.239633 + 0.970864i \(0.422973\pi\)
\(152\) 0 0
\(153\) 51768.8i 0.178789i
\(154\) 0 0
\(155\) 343978. + 53940.0i 1.15001 + 0.180336i
\(156\) 0 0
\(157\) −413958. −1.34032 −0.670158 0.742218i \(-0.733774\pi\)
−0.670158 + 0.742218i \(0.733774\pi\)
\(158\) 0 0
\(159\) −329644. −1.03408
\(160\) 0 0
\(161\) −87230.0 −0.265217
\(162\) 0 0
\(163\) −298618. −0.880332 −0.440166 0.897916i \(-0.645080\pi\)
−0.440166 + 0.897916i \(0.645080\pi\)
\(164\) 0 0
\(165\) −49372.8 + 314852.i −0.141181 + 0.900320i
\(166\) 0 0
\(167\) 248708.i 0.690080i −0.938588 0.345040i \(-0.887865\pi\)
0.938588 0.345040i \(-0.112135\pi\)
\(168\) 0 0
\(169\) −135101. −0.363866
\(170\) 0 0
\(171\) 316602.i 0.827987i
\(172\) 0 0
\(173\) 751593. 1.90927 0.954635 0.297779i \(-0.0962459\pi\)
0.954635 + 0.297779i \(0.0962459\pi\)
\(174\) 0 0
\(175\) 116221. 361459.i 0.286872 0.892205i
\(176\) 0 0
\(177\) 313330.i 0.751741i
\(178\) 0 0
\(179\) 654422.i 1.52660i −0.646044 0.763300i \(-0.723578\pi\)
0.646044 0.763300i \(-0.276422\pi\)
\(180\) 0 0
\(181\) 69025.7i 0.156608i 0.996930 + 0.0783041i \(0.0249505\pi\)
−0.996930 + 0.0783041i \(0.975049\pi\)
\(182\) 0 0
\(183\) 932383.i 2.05810i
\(184\) 0 0
\(185\) −315980. 49549.6i −0.678782 0.106441i
\(186\) 0 0
\(187\) 125424. 0.262286
\(188\) 0 0
\(189\) 278929.i 0.567989i
\(190\) 0 0
\(191\) 622693. 1.23507 0.617534 0.786544i \(-0.288132\pi\)
0.617534 + 0.786544i \(0.288132\pi\)
\(192\) 0 0
\(193\) 656159.i 1.26799i 0.773337 + 0.633995i \(0.218586\pi\)
−0.773337 + 0.633995i \(0.781414\pi\)
\(194\) 0 0
\(195\) 513479. + 80520.0i 0.967022 + 0.151641i
\(196\) 0 0
\(197\) −395601. −0.726259 −0.363129 0.931739i \(-0.618292\pi\)
−0.363129 + 0.931739i \(0.618292\pi\)
\(198\) 0 0
\(199\) 2514.94 0.00450189 0.00225094 0.999997i \(-0.499284\pi\)
0.00225094 + 0.999997i \(0.499284\pi\)
\(200\) 0 0
\(201\) 160674. 0.280515
\(202\) 0 0
\(203\) 453714. 0.772755
\(204\) 0 0
\(205\) −629365. 98692.3i −1.04597 0.164021i
\(206\) 0 0
\(207\) 88307.7i 0.143243i
\(208\) 0 0
\(209\) −767052. −1.21467
\(210\) 0 0
\(211\) 1.01981e6i 1.57693i −0.615078 0.788466i \(-0.710875\pi\)
0.615078 0.788466i \(-0.289125\pi\)
\(212\) 0 0
\(213\) −556554. −0.840539
\(214\) 0 0
\(215\) 1.05761e6 + 165846.i 1.56037 + 0.244686i
\(216\) 0 0
\(217\) 756751.i 1.09095i
\(218\) 0 0
\(219\) 8052.00i 0.0113447i
\(220\) 0 0
\(221\) 204548.i 0.281718i
\(222\) 0 0
\(223\) 88462.3i 0.119123i 0.998225 + 0.0595616i \(0.0189703\pi\)
−0.998225 + 0.0595616i \(0.981030\pi\)
\(224\) 0 0
\(225\) 365925. + 117656.i 0.481877 + 0.154939i
\(226\) 0 0
\(227\) 411836. 0.530468 0.265234 0.964184i \(-0.414551\pi\)
0.265234 + 0.964184i \(0.414551\pi\)
\(228\) 0 0
\(229\) 1.26328e6i 1.59188i −0.605373 0.795942i \(-0.706976\pi\)
0.605373 0.795942i \(-0.293024\pi\)
\(230\) 0 0
\(231\) −692675. −0.854082
\(232\) 0 0
\(233\) 1.21341e6i 1.46426i 0.681165 + 0.732130i \(0.261474\pi\)
−0.681165 + 0.732130i \(0.738526\pi\)
\(234\) 0 0
\(235\) 19800.7 126270.i 0.0233890 0.149152i
\(236\) 0 0
\(237\) −596317. −0.689614
\(238\) 0 0
\(239\) −570738. −0.646312 −0.323156 0.946346i \(-0.604744\pi\)
−0.323156 + 0.946346i \(0.604744\pi\)
\(240\) 0 0
\(241\) −724680. −0.803718 −0.401859 0.915702i \(-0.631636\pi\)
−0.401859 + 0.915702i \(0.631636\pi\)
\(242\) 0 0
\(243\) 854186. 0.927976
\(244\) 0 0
\(245\) −112939. 17710.2i −0.120207 0.0188499i
\(246\) 0 0
\(247\) 1.25095e6i 1.30466i
\(248\) 0 0
\(249\) 2.03313e6 2.07810
\(250\) 0 0
\(251\) 562046.i 0.563103i −0.959546 0.281551i \(-0.909151\pi\)
0.959546 0.281551i \(-0.0908490\pi\)
\(252\) 0 0
\(253\) 213949. 0.210140
\(254\) 0 0
\(255\) 69732.4 444686.i 0.0671559 0.428256i
\(256\) 0 0
\(257\) 453714.i 0.428498i −0.976779 0.214249i \(-0.931270\pi\)
0.976779 0.214249i \(-0.0687305\pi\)
\(258\) 0 0
\(259\) 695156.i 0.643921i
\(260\) 0 0
\(261\) 459319.i 0.417362i
\(262\) 0 0
\(263\) 1.89769e6i 1.69175i 0.533380 + 0.845876i \(0.320921\pi\)
−0.533380 + 0.845876i \(0.679079\pi\)
\(264\) 0 0
\(265\) −951600. 149223.i −0.832415 0.130533i
\(266\) 0 0
\(267\) 1.90091e6 1.63186
\(268\) 0 0
\(269\) 341612.i 0.287841i 0.989589 + 0.143921i \(0.0459710\pi\)
−0.989589 + 0.143921i \(0.954029\pi\)
\(270\) 0 0
\(271\) −528366. −0.437030 −0.218515 0.975834i \(-0.570121\pi\)
−0.218515 + 0.975834i \(0.570121\pi\)
\(272\) 0 0
\(273\) 1.12965e6i 0.917359i
\(274\) 0 0
\(275\) −285054. + 886550.i −0.227298 + 0.706922i
\(276\) 0 0
\(277\) 691329. 0.541359 0.270680 0.962670i \(-0.412752\pi\)
0.270680 + 0.962670i \(0.412752\pi\)
\(278\) 0 0
\(279\) −766100. −0.589217
\(280\) 0 0
\(281\) 387728. 0.292928 0.146464 0.989216i \(-0.453211\pi\)
0.146464 + 0.989216i \(0.453211\pi\)
\(282\) 0 0
\(283\) −208128. −0.154477 −0.0772384 0.997013i \(-0.524610\pi\)
−0.0772384 + 0.997013i \(0.524610\pi\)
\(284\) 0 0
\(285\) −426461. + 2.71956e6i −0.311005 + 1.98329i
\(286\) 0 0
\(287\) 1.38460e6i 0.992248i
\(288\) 0 0
\(289\) 1.24271e6 0.875238
\(290\) 0 0
\(291\) 3.44992e6i 2.38823i
\(292\) 0 0
\(293\) −2.04872e6 −1.39416 −0.697080 0.716993i \(-0.745518\pi\)
−0.697080 + 0.716993i \(0.745518\pi\)
\(294\) 0 0
\(295\) −141838. + 904505.i −0.0948935 + 0.605140i
\(296\) 0 0
\(297\) 684129.i 0.450036i
\(298\) 0 0
\(299\) 348920.i 0.225708i
\(300\) 0 0
\(301\) 2.32674e6i 1.48024i
\(302\) 0 0
\(303\) 2.60834e6i 1.63214i
\(304\) 0 0
\(305\) −422070. + 2.69156e6i −0.259797 + 1.65674i
\(306\) 0 0
\(307\) 877755. 0.531530 0.265765 0.964038i \(-0.414376\pi\)
0.265765 + 0.964038i \(0.414376\pi\)
\(308\) 0 0
\(309\) 1.88552e6i 1.12340i
\(310\) 0 0
\(311\) 2.96427e6 1.73787 0.868935 0.494926i \(-0.164805\pi\)
0.868935 + 0.494926i \(0.164805\pi\)
\(312\) 0 0
\(313\) 1.58612e6i 0.915116i −0.889180 0.457558i \(-0.848724\pi\)
0.889180 0.457558i \(-0.151276\pi\)
\(314\) 0 0
\(315\) −129422. + 825330.i −0.0734906 + 0.468653i
\(316\) 0 0
\(317\) 754884. 0.421922 0.210961 0.977494i \(-0.432341\pi\)
0.210961 + 0.977494i \(0.432341\pi\)
\(318\) 0 0
\(319\) −1.11282e6 −0.612278
\(320\) 0 0
\(321\) 2.04923e6 1.11002
\(322\) 0 0
\(323\) 1.08336e6 0.577784
\(324\) 0 0
\(325\) 1.44584e6 + 464882.i 0.759296 + 0.244138i
\(326\) 0 0
\(327\) 4.49133e6i 2.32277i
\(328\) 0 0
\(329\) 277794. 0.141492
\(330\) 0 0
\(331\) 194226.i 0.0974400i −0.998812 0.0487200i \(-0.984486\pi\)
0.998812 0.0487200i \(-0.0155142\pi\)
\(332\) 0 0
\(333\) 703744. 0.347780
\(334\) 0 0
\(335\) 463826. + 72733.7i 0.225810 + 0.0354098i
\(336\) 0 0
\(337\) 2.47312e6i 1.18623i −0.805116 0.593117i \(-0.797897\pi\)
0.805116 0.593117i \(-0.202103\pi\)
\(338\) 0 0
\(339\) 527040.i 0.249083i
\(340\) 0 0
\(341\) 1.85608e6i 0.864392i
\(342\) 0 0
\(343\) 2.29050e6i 1.05122i
\(344\) 0 0
\(345\) 118950. 758549.i 0.0538043 0.343112i
\(346\) 0 0
\(347\) −2.39126e6 −1.06611 −0.533056 0.846080i \(-0.678956\pi\)
−0.533056 + 0.846080i \(0.678956\pi\)
\(348\) 0 0
\(349\) 2.38607e6i 1.04862i −0.851527 0.524311i \(-0.824323\pi\)
0.851527 0.524311i \(-0.175677\pi\)
\(350\) 0 0
\(351\) 1.11572e6 0.483378
\(352\) 0 0
\(353\) 2.80164e6i 1.19667i −0.801245 0.598336i \(-0.795829\pi\)
0.801245 0.598336i \(-0.204171\pi\)
\(354\) 0 0
\(355\) −1.60663e6 251940.i −0.676621 0.106103i
\(356\) 0 0
\(357\) 978310. 0.406262
\(358\) 0 0
\(359\) −4.18973e6 −1.71574 −0.857868 0.513871i \(-0.828211\pi\)
−0.857868 + 0.513871i \(0.828211\pi\)
\(360\) 0 0
\(361\) −4.14938e6 −1.67577
\(362\) 0 0
\(363\) −1.38217e6 −0.550546
\(364\) 0 0
\(365\) −3644.97 + 23244.1i −0.00143206 + 0.00913232i
\(366\) 0 0
\(367\) 3.46783e6i 1.34398i −0.740560 0.671991i \(-0.765439\pi\)
0.740560 0.671991i \(-0.234561\pi\)
\(368\) 0 0
\(369\) 1.40171e6 0.535910
\(370\) 0 0
\(371\) 2.09352e6i 0.789664i
\(372\) 0 0
\(373\) −1.84265e6 −0.685759 −0.342880 0.939379i \(-0.611402\pi\)
−0.342880 + 0.939379i \(0.611402\pi\)
\(374\) 0 0
\(375\) 2.98476e6 + 1.50355e6i 1.09605 + 0.552128i
\(376\) 0 0
\(377\) 1.81486e6i 0.657641i
\(378\) 0 0
\(379\) 3.94721e6i 1.41154i −0.708443 0.705768i \(-0.750602\pi\)
0.708443 0.705768i \(-0.249398\pi\)
\(380\) 0 0
\(381\) 3.07985e6i 1.08697i
\(382\) 0 0
\(383\) 4.51953e6i 1.57433i −0.616741 0.787166i \(-0.711547\pi\)
0.616741 0.787166i \(-0.288453\pi\)
\(384\) 0 0
\(385\) −1.99958e6 313559.i −0.687523 0.107812i
\(386\) 0 0
\(387\) −2.35548e6 −0.799470
\(388\) 0 0
\(389\) 5.72440e6i 1.91803i −0.283353 0.959016i \(-0.591447\pi\)
0.283353 0.959016i \(-0.408553\pi\)
\(390\) 0 0
\(391\) −302174. −0.0999573
\(392\) 0 0
\(393\) 3.72273e6i 1.21585i
\(394\) 0 0
\(395\) −1.72142e6 269940.i −0.555129 0.0870511i
\(396\) 0 0
\(397\) 1.58558e6 0.504909 0.252454 0.967609i \(-0.418762\pi\)
0.252454 + 0.967609i \(0.418762\pi\)
\(398\) 0 0
\(399\) −5.98304e6 −1.88144
\(400\) 0 0
\(401\) −3.73054e6 −1.15854 −0.579269 0.815136i \(-0.696662\pi\)
−0.579269 + 0.815136i \(0.696662\pi\)
\(402\) 0 0
\(403\) −3.02700e6 −0.928432
\(404\) 0 0
\(405\) 4.07624e6 + 639205.i 1.23487 + 0.193643i
\(406\) 0 0
\(407\) 1.70501e6i 0.510199i
\(408\) 0 0
\(409\) −2.02334e6 −0.598082 −0.299041 0.954240i \(-0.596667\pi\)
−0.299041 + 0.954240i \(0.596667\pi\)
\(410\) 0 0
\(411\) 510936.i 0.149198i
\(412\) 0 0
\(413\) −1.98991e6 −0.574061
\(414\) 0 0
\(415\) 5.86914e6 + 920355.i 1.67284 + 0.262322i
\(416\) 0 0
\(417\) 2.69156e6i 0.757990i
\(418\) 0 0
\(419\) 5.38701e6i 1.49904i −0.661983 0.749519i \(-0.730285\pi\)
0.661983 0.749519i \(-0.269715\pi\)
\(420\) 0 0
\(421\) 1.52112e6i 0.418271i 0.977887 + 0.209135i \(0.0670650\pi\)
−0.977887 + 0.209135i \(0.932935\pi\)
\(422\) 0 0
\(423\) 281226.i 0.0764195i
\(424\) 0 0
\(425\) 402600. 1.25213e6i 0.108119 0.336262i
\(426\) 0 0
\(427\) −5.92143e6 −1.57165
\(428\) 0 0
\(429\) 2.77070e6i 0.726852i
\(430\) 0 0
\(431\) −837627. −0.217199 −0.108599 0.994086i \(-0.534637\pi\)
−0.108599 + 0.994086i \(0.534637\pi\)
\(432\) 0 0
\(433\) 2.25277e6i 0.577426i −0.957416 0.288713i \(-0.906773\pi\)
0.957416 0.288713i \(-0.0932274\pi\)
\(434\) 0 0
\(435\) −618701. + 3.94548e6i −0.156768 + 0.999716i
\(436\) 0 0
\(437\) 1.84800e6 0.462912
\(438\) 0 0
\(439\) 1.39465e6 0.345385 0.172692 0.984976i \(-0.444753\pi\)
0.172692 + 0.984976i \(0.444753\pi\)
\(440\) 0 0
\(441\) 251535. 0.0615888
\(442\) 0 0
\(443\) 5.67982e6 1.37507 0.687536 0.726150i \(-0.258692\pi\)
0.687536 + 0.726150i \(0.258692\pi\)
\(444\) 0 0
\(445\) 5.48745e6 + 860500.i 1.31362 + 0.205992i
\(446\) 0 0
\(447\) 6.30069e6i 1.49149i
\(448\) 0 0
\(449\) 4.07534e6 0.953998 0.476999 0.878904i \(-0.341724\pi\)
0.476999 + 0.878904i \(0.341724\pi\)
\(450\) 0 0
\(451\) 3.39601e6i 0.786190i
\(452\) 0 0
\(453\) −2.56897e6 −0.588185
\(454\) 0 0
\(455\) −511371. + 3.26103e6i −0.115800 + 0.738459i
\(456\) 0 0
\(457\) 2.22059e6i 0.497368i 0.968585 + 0.248684i \(0.0799980\pi\)
−0.968585 + 0.248684i \(0.920002\pi\)
\(458\) 0 0
\(459\) 966240.i 0.214069i
\(460\) 0 0
\(461\) 2.18822e6i 0.479556i −0.970828 0.239778i \(-0.922925\pi\)
0.970828 0.239778i \(-0.0770747\pi\)
\(462\) 0 0
\(463\) 8.23618e6i 1.78556i −0.450497 0.892778i \(-0.648753\pi\)
0.450497 0.892778i \(-0.351247\pi\)
\(464\) 0 0
\(465\) −6.58068e6 1.03193e6i −1.41136 0.221319i
\(466\) 0 0
\(467\) −4.79680e6 −1.01779 −0.508897 0.860827i \(-0.669947\pi\)
−0.508897 + 0.860827i \(0.669947\pi\)
\(468\) 0 0
\(469\) 1.02042e6i 0.214213i
\(470\) 0 0
\(471\) 7.91948e6 1.64492
\(472\) 0 0
\(473\) 5.70678e6i 1.17284i
\(474\) 0 0
\(475\) −2.46218e6 + 7.65765e6i −0.500709 + 1.55726i
\(476\) 0 0
\(477\) 2.11938e6 0.426495
\(478\) 0 0
\(479\) −3.41529e6 −0.680124 −0.340062 0.940403i \(-0.610448\pi\)
−0.340062 + 0.940403i \(0.610448\pi\)
\(480\) 0 0
\(481\) 2.78062e6 0.547999
\(482\) 0 0
\(483\) 1.66881e6 0.325491
\(484\) 0 0
\(485\) −1.56170e6 + 9.95905e6i −0.301470 + 1.92249i
\(486\) 0 0
\(487\) 922166.i 0.176192i 0.996112 + 0.0880961i \(0.0280783\pi\)
−0.996112 + 0.0880961i \(0.971922\pi\)
\(488\) 0 0
\(489\) 5.71289e6 1.08040
\(490\) 0 0
\(491\) 5.75918e6i 1.07810i 0.842275 + 0.539048i \(0.181216\pi\)
−0.842275 + 0.539048i \(0.818784\pi\)
\(492\) 0 0
\(493\) 1.57171e6 0.291243
\(494\) 0 0
\(495\) 317433. 2.02428e6i 0.0582290 0.371329i
\(496\) 0 0
\(497\) 3.53459e6i 0.641872i
\(498\) 0 0
\(499\) 4.04215e6i 0.726709i 0.931651 + 0.363355i \(0.118369\pi\)
−0.931651 + 0.363355i \(0.881631\pi\)
\(500\) 0 0
\(501\) 4.75807e6i 0.846909i
\(502\) 0 0
\(503\) 6.42790e6i 1.13279i 0.824134 + 0.566395i \(0.191662\pi\)
−0.824134 + 0.566395i \(0.808338\pi\)
\(504\) 0 0
\(505\) 1.18074e6 7.52963e6i 0.206028 1.31385i
\(506\) 0 0
\(507\) 2.58463e6 0.446559
\(508\) 0 0
\(509\) 8.67839e6i 1.48472i −0.670001 0.742360i \(-0.733707\pi\)
0.670001 0.742360i \(-0.266293\pi\)
\(510\) 0 0
\(511\) −51137.1 −0.00866330
\(512\) 0 0
\(513\) 5.90922e6i 0.991373i
\(514\) 0 0
\(515\) 853535. 5.44303e6i 0.141809 0.904321i
\(516\) 0 0
\(517\) −681344. −0.112109
\(518\) 0 0
\(519\) −1.43788e7 −2.34317
\(520\) 0 0
\(521\) 4.06563e6 0.656197 0.328098 0.944644i \(-0.393592\pi\)
0.328098 + 0.944644i \(0.393592\pi\)
\(522\) 0 0
\(523\) −4.29913e6 −0.687268 −0.343634 0.939104i \(-0.611658\pi\)
−0.343634 + 0.939104i \(0.611658\pi\)
\(524\) 0 0
\(525\) −2.22343e6 + 6.91513e6i −0.352067 + 1.09497i
\(526\) 0 0
\(527\) 2.62146e6i 0.411166i
\(528\) 0 0
\(529\) 5.92089e6 0.919916
\(530\) 0 0
\(531\) 2.01449e6i 0.310049i
\(532\) 0 0
\(533\) 5.53841e6 0.844437
\(534\) 0 0
\(535\) 5.91563e6 + 927645.i 0.893545 + 0.140119i
\(536\) 0 0
\(537\) 1.25198e7i 1.87354i
\(538\) 0 0
\(539\) 609410.i 0.0903520i
\(540\) 0 0
\(541\) 2.98051e6i 0.437821i −0.975745 0.218911i \(-0.929750\pi\)
0.975745 0.218911i \(-0.0702503\pi\)
\(542\) 0 0
\(543\) 1.32054e6i 0.192199i
\(544\) 0 0
\(545\) −2.03313e6 + 1.29654e7i −0.293207 + 1.86979i
\(546\) 0 0
\(547\) 841980. 0.120319 0.0601594 0.998189i \(-0.480839\pi\)
0.0601594 + 0.998189i \(0.480839\pi\)
\(548\) 0 0
\(549\) 5.99458e6i 0.848844i
\(550\) 0 0
\(551\) −9.61209e6 −1.34877
\(552\) 0 0
\(553\) 3.78712e6i 0.526619i
\(554\) 0 0
\(555\) 6.04505e6 + 947940.i 0.833043 + 0.130632i
\(556\) 0 0
\(557\) −7.95114e6 −1.08590 −0.542952 0.839764i \(-0.682693\pi\)
−0.542952 + 0.839764i \(0.682693\pi\)
\(558\) 0 0
\(559\) −9.30695e6 −1.25973
\(560\) 0 0
\(561\) −2.39950e6 −0.321894
\(562\) 0 0
\(563\) 4.88079e6 0.648962 0.324481 0.945892i \(-0.394810\pi\)
0.324481 + 0.945892i \(0.394810\pi\)
\(564\) 0 0
\(565\) −238580. + 1.52143e6i −0.0314422 + 0.200508i
\(566\) 0 0
\(567\) 8.96772e6i 1.17145i
\(568\) 0 0
\(569\) 7.06257e6 0.914497 0.457248 0.889339i \(-0.348835\pi\)
0.457248 + 0.889339i \(0.348835\pi\)
\(570\) 0 0
\(571\) 1.72095e6i 0.220891i −0.993882 0.110445i \(-0.964772\pi\)
0.993882 0.110445i \(-0.0352278\pi\)
\(572\) 0 0
\(573\) −1.19128e7 −1.51575
\(574\) 0 0
\(575\) 686758. 2.13590e6i 0.0866232 0.269408i
\(576\) 0 0
\(577\) 1.57279e7i 1.96666i −0.181823 0.983331i \(-0.558200\pi\)
0.181823 0.983331i \(-0.441800\pi\)
\(578\) 0 0
\(579\) 1.25531e7i 1.55616i
\(580\) 0 0
\(581\) 1.29121e7i 1.58693i
\(582\) 0 0
\(583\) 5.13477e6i 0.625676i
\(584\) 0 0
\(585\) −3.30132e6 517688.i −0.398839 0.0625430i
\(586\) 0 0
\(587\) 1.31369e7 1.57361 0.786804 0.617203i \(-0.211734\pi\)
0.786804 + 0.617203i \(0.211734\pi\)
\(588\) 0 0
\(589\) 1.60320e7i 1.90415i
\(590\) 0 0
\(591\) 7.56829e6 0.891310
\(592\) 0 0
\(593\) 9.44213e6i 1.10264i 0.834294 + 0.551319i \(0.185875\pi\)
−0.834294 + 0.551319i \(0.814125\pi\)
\(594\) 0 0
\(595\) 2.82414e6 + 442860.i 0.327034 + 0.0512831i
\(596\) 0 0
\(597\) −48113.6 −0.00552500
\(598\) 0 0
\(599\) 1.05602e7 1.20256 0.601279 0.799039i \(-0.294658\pi\)
0.601279 + 0.799039i \(0.294658\pi\)
\(600\) 0 0
\(601\) −1.00758e7 −1.13787 −0.568937 0.822381i \(-0.692645\pi\)
−0.568937 + 0.822381i \(0.692645\pi\)
\(602\) 0 0
\(603\) −1.03302e6 −0.115696
\(604\) 0 0
\(605\) −3.98997e6 625677.i −0.443181 0.0694964i
\(606\) 0 0
\(607\) 4.22464e6i 0.465391i −0.972550 0.232696i \(-0.925245\pi\)
0.972550 0.232696i \(-0.0747546\pi\)
\(608\) 0 0
\(609\) −8.68006e6 −0.948373
\(610\) 0 0
\(611\) 1.11118e6i 0.120415i
\(612\) 0 0
\(613\) 9.47741e6 1.01868 0.509341 0.860565i \(-0.329889\pi\)
0.509341 + 0.860565i \(0.329889\pi\)
\(614\) 0 0
\(615\) 1.20405e7 + 1.88809e6i 1.28368 + 0.201296i
\(616\) 0 0
\(617\) 1.41901e7i 1.50063i 0.661081 + 0.750315i \(0.270098\pi\)
−0.661081 + 0.750315i \(0.729902\pi\)
\(618\) 0 0
\(619\) 7.32823e6i 0.768728i −0.923182 0.384364i \(-0.874421\pi\)
0.923182 0.384364i \(-0.125579\pi\)
\(620\) 0 0
\(621\) 1.64822e6i 0.171509i
\(622\) 0 0
\(623\) 1.20724e7i 1.24616i
\(624\) 0 0
\(625\) 7.93562e6 + 5.69151e6i 0.812608 + 0.582811i
\(626\) 0 0
\(627\) 1.46746e7 1.49072
\(628\) 0 0
\(629\) 2.40809e6i 0.242687i
\(630\) 0 0
\(631\) 8.90206e6 0.890056 0.445028 0.895517i \(-0.353194\pi\)
0.445028 + 0.895517i \(0.353194\pi\)
\(632\) 0 0
\(633\) 1.95101e7i 1.93531i
\(634\) 0 0
\(635\) −1.39418e6 + 8.89075e6i −0.137210 + 0.874992i
\(636\) 0 0
\(637\) 993862. 0.0970459
\(638\) 0 0
\(639\) 3.57826e6 0.346673
\(640\) 0 0
\(641\) −4.64056e6 −0.446093 −0.223046 0.974808i \(-0.571600\pi\)
−0.223046 + 0.974808i \(0.571600\pi\)
\(642\) 0 0
\(643\) −1.33925e7 −1.27742 −0.638712 0.769446i \(-0.720533\pi\)
−0.638712 + 0.769446i \(0.720533\pi\)
\(644\) 0 0
\(645\) −2.02332e7 3.17282e6i −1.91499 0.300294i
\(646\) 0 0
\(647\) 7.50695e6i 0.705022i −0.935808 0.352511i \(-0.885328\pi\)
0.935808 0.352511i \(-0.114672\pi\)
\(648\) 0 0
\(649\) 4.88064e6 0.454847
\(650\) 0 0
\(651\) 1.44775e7i 1.33888i
\(652\) 0 0
\(653\) 9.28654e6 0.852258 0.426129 0.904662i \(-0.359877\pi\)
0.426129 + 0.904662i \(0.359877\pi\)
\(654\) 0 0
\(655\) 1.68520e6 1.07466e7i 0.153479 0.978740i
\(656\) 0 0
\(657\) 51768.8i 0.00467902i
\(658\) 0 0
\(659\) 2.14194e6i 0.192130i −0.995375 0.0960648i \(-0.969374\pi\)
0.995375 0.0960648i \(-0.0306256\pi\)
\(660\) 0 0
\(661\) 5.13285e6i 0.456936i 0.973551 + 0.228468i \(0.0733716\pi\)
−0.973551 + 0.228468i \(0.926628\pi\)
\(662\) 0 0
\(663\) 3.91324e6i 0.345742i
\(664\) 0 0
\(665\) −1.72715e7 2.70839e6i −1.51453 0.237497i
\(666\) 0 0
\(667\) 2.68104e6 0.233339
\(668\) 0 0
\(669\) 1.69238e6i 0.146195i
\(670\) 0 0
\(671\) 1.45235e7 1.24527
\(672\) 0 0
\(673\) 1.02549e7i 0.872754i 0.899764 + 0.436377i \(0.143739\pi\)
−0.899764 + 0.436377i \(0.856261\pi\)
\(674\) 0 0
\(675\) 6.82981e6 + 2.19600e6i 0.576965 + 0.185512i
\(676\) 0 0
\(677\) −1.81369e7 −1.52087 −0.760433 0.649416i \(-0.775013\pi\)
−0.760433 + 0.649416i \(0.775013\pi\)
\(678\) 0 0
\(679\) −2.19099e7 −1.82375
\(680\) 0 0
\(681\) −7.87888e6 −0.651024
\(682\) 0 0
\(683\) 1.29609e7 1.06313 0.531563 0.847019i \(-0.321605\pi\)
0.531563 + 0.847019i \(0.321605\pi\)
\(684\) 0 0
\(685\) −231290. + 1.47495e6i −0.0188335 + 0.120102i
\(686\) 0 0
\(687\) 2.41680e7i 1.95366i
\(688\) 0 0
\(689\) 8.37408e6 0.672031
\(690\) 0 0
\(691\) 1.77055e7i 1.41063i 0.708894 + 0.705315i \(0.249194\pi\)
−0.708894 + 0.705315i \(0.750806\pi\)
\(692\) 0 0
\(693\) 4.45342e6 0.352258
\(694\) 0 0
\(695\) 1.21841e6 7.76986e6i 0.0956824 0.610170i
\(696\) 0 0
\(697\) 4.79640e6i 0.373967i
\(698\) 0 0
\(699\) 2.32139e7i 1.79703i
\(700\) 0 0
\(701\) 8.73670e6i 0.671510i 0.941949 + 0.335755i \(0.108991\pi\)
−0.941949 + 0.335755i \(0.891009\pi\)
\(702\) 0 0
\(703\) 1.47271e7i 1.12391i
\(704\) 0 0
\(705\) −378810. + 2.41569e6i −0.0287044 + 0.183049i
\(706\) 0 0
\(707\) 1.65652e7 1.24637
\(708\) 0 0
\(709\) 8.22402e6i 0.614425i 0.951641 + 0.307212i \(0.0993962\pi\)
−0.951641 + 0.307212i \(0.900604\pi\)
\(710\) 0 0
\(711\) 3.83391e6 0.284425
\(712\) 0 0
\(713\) 4.47171e6i 0.329420i
\(714\) 0 0
\(715\) 1.25424e6 7.99832e6i 0.0917518 0.585105i
\(716\) 0 0
\(717\) 1.09189e7 0.793195
\(718\) 0 0
\(719\) −1.63870e7 −1.18216 −0.591082 0.806612i \(-0.701299\pi\)
−0.591082 + 0.806612i \(0.701299\pi\)
\(720\) 0 0
\(721\) 1.19747e7 0.857877
\(722\) 0 0
\(723\) 1.38639e7 0.986373
\(724\) 0 0
\(725\) −3.57207e6 + 1.11095e7i −0.252392 + 0.784967i
\(726\) 0 0
\(727\) 2.04002e7i 1.43152i −0.698346 0.715760i \(-0.746080\pi\)
0.698346 0.715760i \(-0.253920\pi\)
\(728\) 0 0
\(729\) 1.59405e6 0.111092
\(730\) 0 0
\(731\) 8.06005e6i 0.557885i
\(732\) 0 0
\(733\) −6.29292e6 −0.432606 −0.216303 0.976326i \(-0.569400\pi\)
−0.216303 + 0.976326i \(0.569400\pi\)
\(734\) 0 0
\(735\) 2.16065e6 + 338816.i 0.147525 + 0.0231338i
\(736\) 0 0
\(737\) 2.50277e6i 0.169728i
\(738\) 0 0
\(739\) 1.24400e7i 0.837934i 0.908002 + 0.418967i \(0.137608\pi\)
−0.908002 + 0.418967i \(0.862392\pi\)
\(740\) 0 0
\(741\) 2.39321e7i 1.60117i
\(742\) 0 0
\(743\) 1.80211e7i 1.19759i 0.800901 + 0.598796i \(0.204354\pi\)
−0.800901 + 0.598796i \(0.795646\pi\)
\(744\) 0 0
\(745\) 2.85219e6 1.81885e7i 0.188273 1.20062i
\(746\) 0 0
\(747\) −1.30716e7 −0.857094
\(748\) 0 0
\(749\) 1.30144e7i 0.847655i
\(750\) 0 0
\(751\) −1.44062e7 −0.932074 −0.466037 0.884765i \(-0.654319\pi\)
−0.466037 + 0.884765i \(0.654319\pi\)
\(752\) 0 0
\(753\) 1.07526e7i 0.691075i
\(754\) 0 0
\(755\) −7.41599e6 1.16292e6i −0.473480 0.0742476i
\(756\) 0 0
\(757\) 6.45449e6 0.409376 0.204688 0.978827i \(-0.434382\pi\)
0.204688 + 0.978827i \(0.434382\pi\)
\(758\) 0 0
\(759\) −4.09308e6 −0.257897
\(760\) 0 0
\(761\) 2.63016e7 1.64635 0.823173 0.567791i \(-0.192202\pi\)
0.823173 + 0.567791i \(0.192202\pi\)
\(762\) 0 0
\(763\) −2.85238e7 −1.77376
\(764\) 0 0
\(765\) −448331. + 2.85903e6i −0.0276978 + 0.176630i
\(766\) 0 0
\(767\) 7.95964e6i 0.488546i
\(768\) 0 0
\(769\) 1.12180e6 0.0684070 0.0342035 0.999415i \(-0.489111\pi\)
0.0342035 + 0.999415i \(0.489111\pi\)
\(770\) 0 0
\(771\) 8.68006e6i 0.525880i
\(772\) 0 0
\(773\) 1.26128e7 0.759213 0.379607 0.925148i \(-0.376059\pi\)
0.379607 + 0.925148i \(0.376059\pi\)
\(774\) 0 0
\(775\) −1.85297e7 5.95787e6i −1.10819 0.356317i
\(776\) 0 0
\(777\) 1.32991e7i 0.790260i
\(778\) 0 0
\(779\) 2.93333e7i 1.73188i
\(780\) 0 0
\(781\) 8.66927e6i 0.508575i
\(782\) 0 0
\(783\) 8.57297e6i 0.499720i
\(784\) 0 0
\(785\) 2.28616e7 + 3.58498e6i 1.32413 + 0.207641i
\(786\) 0 0
\(787\) −2.48088e7 −1.42781 −0.713904 0.700244i \(-0.753075\pi\)
−0.713904 + 0.700244i \(0.753075\pi\)
\(788\) 0 0
\(789\) 3.63050e7i 2.07622i
\(790\) 0 0
\(791\) −3.34715e6 −0.190210
\(792\) 0 0
\(793\) 2.36857e7i 1.33753i
\(794\) 0 0
\(795\) 1.82052e7 + 2.85480e6i 1.02159 + 0.160198i
\(796\) 0 0
\(797\) −1.93080e7 −1.07669 −0.538346 0.842724i \(-0.680951\pi\)
−0.538346 + 0.842724i \(0.680951\pi\)
\(798\) 0 0
\(799\) 962307. 0.0533269
\(800\) 0 0
\(801\) −1.22215e7 −0.673045