Properties

Label 320.6.c.c.129.2
Level $320$
Weight $6$
Character 320.129
Analytic conductor $51.323$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [320,6,Mod(129,320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("320.129");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.3228223402\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 129.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 320.129
Dual form 320.6.c.c.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-41.0000 + 38.0000i) q^{5} +243.000 q^{9} +O(q^{10})\) \(q+(-41.0000 + 38.0000i) q^{5} +243.000 q^{9} -244.000i q^{13} -808.000i q^{17} +(237.000 - 3116.00i) q^{25} -2950.00 q^{29} +11292.0i q^{37} +20950.0 q^{41} +(-9963.00 + 9234.00i) q^{45} +16807.0 q^{49} +40244.0i q^{53} +18950.0 q^{61} +(9272.00 + 10004.0i) q^{65} -20144.0i q^{73} +59049.0 q^{81} +(30704.0 + 33128.0i) q^{85} +51050.0 q^{89} +160808. i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 82 q^{5} + 486 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 82 q^{5} + 486 q^{9} + 474 q^{25} - 5900 q^{29} + 41900 q^{41} - 19926 q^{45} + 33614 q^{49} + 37900 q^{61} + 18544 q^{65} + 118098 q^{81} + 61408 q^{85} + 102100 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) −41.0000 + 38.0000i −0.733430 + 0.679765i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 243.000 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 244.000i 0.400434i −0.979752 0.200217i \(-0.935835\pi\)
0.979752 0.200217i \(-0.0641648\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 808.000i 0.678093i −0.940770 0.339046i \(-0.889896\pi\)
0.940770 0.339046i \(-0.110104\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 237.000 3116.00i 0.0758400 0.997120i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2950.00 −0.651369 −0.325684 0.945479i \(-0.605595\pi\)
−0.325684 + 0.945479i \(0.605595\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11292.0i 1.35602i 0.735052 + 0.678011i \(0.237158\pi\)
−0.735052 + 0.678011i \(0.762842\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 20950.0 1.94637 0.973183 0.230033i \(-0.0738836\pi\)
0.973183 + 0.230033i \(0.0738836\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) −9963.00 + 9234.00i −0.733430 + 0.679765i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 16807.0 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 40244.0i 1.96794i 0.178339 + 0.983969i \(0.442928\pi\)
−0.178339 + 0.983969i \(0.557072\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 18950.0 0.652056 0.326028 0.945360i \(-0.394290\pi\)
0.326028 + 0.945360i \(0.394290\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9272.00 + 10004.0i 0.272201 + 0.293691i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 20144.0i 0.442424i −0.975226 0.221212i \(-0.928999\pi\)
0.975226 0.221212i \(-0.0710013\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 59049.0 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 30704.0 + 33128.0i 0.460943 + 0.497334i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 51050.0 0.683157 0.341579 0.939853i \(-0.389038\pi\)
0.341579 + 0.939853i \(0.389038\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 160808.i 1.73531i 0.497162 + 0.867657i \(0.334375\pi\)
−0.497162 + 0.867657i \(0.665625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 98002.0 0.955942 0.477971 0.878376i \(-0.341372\pi\)
0.477971 + 0.878376i \(0.341372\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 246486. 1.98713 0.993564 0.113269i \(-0.0361321\pi\)
0.993564 + 0.113269i \(0.0361321\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 244144.i 1.79866i 0.437267 + 0.899332i \(0.355947\pi\)
−0.437267 + 0.899332i \(0.644053\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 59292.0i 0.400434i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −161051. −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 108691. + 136762.i 0.622184 + 0.782871i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 432808.i 1.97013i 0.172196 + 0.985063i \(0.444914\pi\)
−0.172196 + 0.985063i \(0.555086\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 120950. 112100.i 0.477734 0.442778i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 47614.0 0.175699 0.0878494 0.996134i \(-0.472001\pi\)
0.0878494 + 0.996134i \(0.472001\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 196344.i 0.678093i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 371292.i 1.20217i −0.799185 0.601086i \(-0.794735\pi\)
0.799185 0.601086i \(-0.205265\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 311757. 0.839652
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 544244.i 1.38254i 0.722596 + 0.691271i \(0.242949\pi\)
−0.722596 + 0.691271i \(0.757051\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −439902. −0.998067 −0.499033 0.866583i \(-0.666311\pi\)
−0.499033 + 0.866583i \(0.666311\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −429096. 462972.i −0.921775 0.994547i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 907656.i 1.75399i −0.480496 0.876997i \(-0.659543\pi\)
0.480496 0.876997i \(-0.340457\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.02091e6i 1.87422i −0.349031 0.937111i \(-0.613489\pi\)
0.349031 0.937111i \(-0.386511\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −858950. + 796100.i −1.42752 + 1.32307i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −197152. −0.271532
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 57591.0 757188.i 0.0758400 0.997120i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −1.25115e6 −1.57660 −0.788298 0.615293i \(-0.789038\pi\)
−0.788298 + 0.615293i \(0.789038\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 619856.i 0.747999i −0.927429 0.373999i \(-0.877986\pi\)
0.927429 0.373999i \(-0.122014\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 477150. 0.529191 0.264595 0.964360i \(-0.414762\pi\)
0.264595 + 0.964360i \(0.414762\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −689087. + 638666.i −0.733430 + 0.679765i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.01539e6i 1.90339i 0.307052 + 0.951693i \(0.400657\pi\)
−0.307052 + 0.951693i \(0.599343\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −716850. −0.651369
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −1.52927e6 1.65000e6i −1.33773 1.44335i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.35141e6 1.98129 0.990646 0.136458i \(-0.0435720\pi\)
0.990646 + 0.136458i \(0.0435720\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.45109e6i 1.91938i −0.281067 0.959688i \(-0.590688\pi\)
0.281067 0.959688i \(-0.409312\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.64305e6 −1.99682 −0.998412 0.0563421i \(-0.982056\pi\)
−0.998412 + 0.0563421i \(0.982056\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 766993. 0.540190
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.62424e6i 1.10531i −0.833412 0.552653i \(-0.813616\pi\)
0.833412 0.552653i \(-0.186384\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −776950. + 720100.i −0.478237 + 0.443244i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 1.91566e6i 1.10524i −0.833433 0.552620i \(-0.813628\pi\)
0.833433 0.552620i \(-0.186372\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.51509e6i 1.96467i −0.187144 0.982333i \(-0.559923\pi\)
0.187144 0.982333i \(-0.440077\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −760304. 57828.0i −0.399281 0.0303689i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 2.74396e6i 1.35602i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.48861e6i 1.67331i 0.547727 + 0.836657i \(0.315493\pi\)
−0.547727 + 0.836657i \(0.684507\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 4.44505e6 1.95350 0.976749 0.214385i \(-0.0687747\pi\)
0.976749 + 0.214385i \(0.0687747\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.78786e6i 1.61792i 0.587865 + 0.808959i \(0.299969\pi\)
−0.587865 + 0.808959i \(0.700031\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −2.47610e6 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 765472. + 825904.i 0.300744 + 0.324487i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 5.09085e6 1.94637
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.50404e6i 0.559743i 0.960038 + 0.279871i \(0.0902918\pi\)
−0.960038 + 0.279871i \(0.909708\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 719800.i 0.260831i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.28629e6 1.77124 0.885618 0.464414i \(-0.153735\pi\)
0.885618 + 0.464414i \(0.153735\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 6.27529e6i 1.99829i 0.0413901 + 0.999143i \(0.486821\pi\)
−0.0413901 + 0.999143i \(0.513179\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.59200e6 0.494405 0.247202 0.968964i \(-0.420489\pi\)
0.247202 + 0.968964i \(0.420489\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.42101e6 + 2.24386e6i −0.733430 + 0.679765i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 4.58449e6 1.35513 0.677567 0.735461i \(-0.263034\pi\)
0.677567 + 0.735461i \(0.263034\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −5.94885e6 −1.63579 −0.817895 0.575367i \(-0.804859\pi\)
−0.817895 + 0.575367i \(0.804859\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.51773e6 191496.i −0.676140 0.0514265i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 532344.i 0.136450i −0.997670 0.0682249i \(-0.978266\pi\)
0.997670 0.0682249i \(-0.0217335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 4.08410e6 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −2.09305e6 + 1.93990e6i −0.501048 + 0.464386i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.48961e6 1.98734 0.993670 0.112340i \(-0.0358346\pi\)
0.993670 + 0.112340i \(0.0358346\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.21681e6i 1.61642i −0.588893 0.808211i \(-0.700436\pi\)
0.588893 0.808211i \(-0.299564\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.86580e6 1.50466 0.752331 0.658785i \(-0.228929\pi\)
0.752331 + 0.658785i \(0.228929\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.77929e6i 1.96794i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 2.75525e6 0.542998
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.11070e6 6.59313e6i −1.17961 1.27273i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 2.38360e6i 0.441688i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −4.01808e6 + 3.72408e6i −0.701117 + 0.649816i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.05090e7 1.79791 0.898957 0.438037i \(-0.144326\pi\)
0.898957 + 0.438037i \(0.144326\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.27410e6 −1.17405 −0.587023 0.809570i \(-0.699700\pi\)
−0.587023 + 0.809570i \(0.699700\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 6.43634e6 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.11180e6i 0.779392i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.25380e6 −1.21244 −0.606221 0.795297i \(-0.707315\pi\)
−0.606221 + 0.795297i \(0.707315\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.01059e7 + 9.36647e6i −1.45742 + 1.35078i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 4.60485e6 0.652056
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 491092.i 0.0670695i 0.999438 + 0.0335347i \(0.0106764\pi\)
−0.999438 + 0.0335347i \(0.989324\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −9.27747e6 1.00099e7i −1.22267 1.31919i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.96659e6 −0.513613 −0.256807 0.966463i \(-0.582670\pi\)
−0.256807 + 0.966463i \(0.582670\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.56490e7i 1.95680i −0.206712 0.978402i \(-0.566276\pi\)
0.206712 0.978402i \(-0.433724\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 2.25310e6 + 2.43097e6i 0.272201 + 0.293691i
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.70359e7i 1.98942i 0.102706 + 0.994712i \(0.467250\pi\)
−0.102706 + 0.994712i \(0.532750\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −1.51550e7 −1.71148 −0.855739 0.517408i \(-0.826897\pi\)
−0.855739 + 0.517408i \(0.826897\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.60309e6 6.11994e6i 0.733430 0.679765i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 1.48960e7i 1.60110i −0.599263 0.800552i \(-0.704540\pi\)
0.599263 0.800552i \(-0.295460\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.62461e6i 0.700563i −0.936644 0.350282i \(-0.886086\pi\)
0.936644 0.350282i \(-0.113914\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9.65329e6 1.47698e6i −0.988497 0.151243i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.12394e6 0.919508
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 4.10091e6i 0.400434i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.45952e7 −1.40303 −0.701514 0.712655i \(-0.747492\pi\)
−0.701514 + 0.712655i \(0.747492\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.93996e7i 1.78036i −0.455605 0.890182i \(-0.650577\pi\)
0.455605 0.890182i \(-0.349423\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.89499e6i 0.442424i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −8.60525e6 −0.766055 −0.383027 0.923737i \(-0.625119\pi\)
−0.383027 + 0.923737i \(0.625119\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.57963e7i 1.34437i −0.740383 0.672185i \(-0.765356\pi\)
0.740383 0.672185i \(-0.234644\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.34115e7i 1.96317i 0.191032 + 0.981584i \(0.438817\pi\)
−0.191032 + 0.981584i \(0.561183\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −1.64467e7 1.77451e7i −1.33922 1.44495i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.81954e6 0.788030
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.69276e7i 1.31982i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.11650e7 −1.62676 −0.813381 0.581731i \(-0.802376\pi\)
−0.813381 + 0.581731i \(0.802376\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.98715e6 −0.297884 −0.148942 0.988846i \(-0.547587\pi\)
−0.148942 + 0.988846i \(0.547587\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −699150. + 9.19220e6i −0.0493998 + 0.649493i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.43489e7 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.05122e7i 0.722662i 0.932438 + 0.361331i \(0.117678\pi\)
−0.932438 + 0.361331i \(0.882322\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −1.95217e6 + 1.80933e6i −0.128863 + 0.119434i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.00451e6i 0.190561i 0.995450 + 0.0952804i \(0.0303748\pi\)
−0.995450 + 0.0952804i \(0.969625\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.95198e7 1.22184 0.610919 0.791693i \(-0.290800\pi\)
0.610919 + 0.791693i \(0.290800\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.46107e6 + 8.05010e6i 0.460943 + 0.497334i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.02848e7 −1.23695 −0.618477 0.785803i \(-0.712250\pi\)
−0.618477 + 0.785803i \(0.712250\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.28636e7i 1.97818i 0.147312 + 0.989090i \(0.452938\pi\)
−0.147312 + 0.989090i \(0.547062\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.41091e7 + 1.52230e7i 0.817194 + 0.881709i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.62380e6i 0.261106i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.49645e7i 0.834481i 0.908796 + 0.417241i \(0.137003\pi\)
−0.908796 + 0.417241i \(0.862997\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 1.24052e7 0.683157
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.87790e7 1.54598 0.772992 0.634415i \(-0.218759\pi\)
0.772992 + 0.634415i \(0.218759\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.21148e7 1.66283 0.831413 0.555655i \(-0.187533\pi\)
0.831413 + 0.555655i \(0.187533\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −7.96819e6 −0.402692 −0.201346 0.979520i \(-0.564532\pi\)
−0.201346 + 0.979520i \(0.564532\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.35801e7i 0.678093i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −1.18086e7 −0.575719
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.27820e7 + 1.18468e7i −0.615826 + 0.570766i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 7.55204e6i 0.355379i −0.984087 0.177690i \(-0.943138\pi\)
0.984087 0.177690i \(-0.0568623\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.72168e7i 1.26586i 0.774210 + 0.632929i \(0.218148\pi\)
−0.774210 + 0.632929i \(0.781852\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −2.06813e7 2.23140e7i −0.939803 1.01400i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 3.90763e7i 1.73531i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.88193e7i 1.70431i −0.523289 0.852155i \(-0.675295\pi\)
0.523289 0.852155i \(-0.324705\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.40848e7 1.91359 0.956794 0.290765i \(-0.0939099\pi\)
0.956794 + 0.290765i \(0.0939099\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 3.25172e7 1.33444
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.80360e7 1.67163e7i 0.732012 0.678450i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 2.38145e7 0.955942
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 3.51859e7 + 2.67620e6i 1.35212 + 0.102841i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.76633e7 −1.81194 −0.905972 0.423337i \(-0.860859\pi\)
−0.905972 + 0.423337i \(0.860859\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.26070e7i 1.95747i 0.205135 + 0.978734i \(0.434237\pi\)
−0.205135 + 0.978734i \(0.565763\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.85570e6 −0.178763 −0.0893816 0.995997i \(-0.528489\pi\)
−0.0893816 + 0.995997i \(0.528489\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −4.91514e6 −0.177162
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.17799e7i 1.13350i 0.823890 + 0.566749i \(0.191799\pi\)
−0.823890 + 0.566749i \(0.808201\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.86292e7 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.44909e7 + 3.72139e7i 1.19230 + 1.28643i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.57128e7i 1.19698i 0.801130 + 0.598491i \(0.204233\pi\)
−0.801130 + 0.598491i \(0.795767\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.98961e7 1.98713
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 3.87945e7 + 4.18572e7i 1.27403 + 1.37461i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.12753e7i 1.63369i −0.576856 0.816846i \(-0.695720\pi\)
0.576856 0.816846i \(-0.304280\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.6.c.c.129.2 2
4.3 odd 2 CM 320.6.c.c.129.2 2
5.4 even 2 inner 320.6.c.c.129.1 2
8.3 odd 2 160.6.c.a.129.1 2
8.5 even 2 160.6.c.a.129.1 2
20.19 odd 2 inner 320.6.c.c.129.1 2
40.3 even 4 800.6.a.b.1.1 1
40.13 odd 4 800.6.a.b.1.1 1
40.19 odd 2 160.6.c.a.129.2 yes 2
40.27 even 4 800.6.a.c.1.1 1
40.29 even 2 160.6.c.a.129.2 yes 2
40.37 odd 4 800.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.6.c.a.129.1 2 8.3 odd 2
160.6.c.a.129.1 2 8.5 even 2
160.6.c.a.129.2 yes 2 40.19 odd 2
160.6.c.a.129.2 yes 2 40.29 even 2
320.6.c.c.129.1 2 5.4 even 2 inner
320.6.c.c.129.1 2 20.19 odd 2 inner
320.6.c.c.129.2 2 1.1 even 1 trivial
320.6.c.c.129.2 2 4.3 odd 2 CM
800.6.a.b.1.1 1 40.3 even 4
800.6.a.b.1.1 1 40.13 odd 4
800.6.a.c.1.1 1 40.27 even 4
800.6.a.c.1.1 1 40.37 odd 4