Properties

Label 320.6.a.k
Level 320
Weight 6
Character orbit 320.a
Self dual yes
Analytic conductor 51.323
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(51.3228223402\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 6q^{3} + 25q^{5} + 118q^{7} - 207q^{9} + O(q^{10}) \) \( q + 6q^{3} + 25q^{5} + 118q^{7} - 207q^{9} + 192q^{11} - 1106q^{13} + 150q^{15} + 762q^{17} - 2740q^{19} + 708q^{21} - 1566q^{23} + 625q^{25} - 2700q^{27} - 5910q^{29} + 6868q^{31} + 1152q^{33} + 2950q^{35} + 5518q^{37} - 6636q^{39} - 378q^{41} - 2434q^{43} - 5175q^{45} - 13122q^{47} - 2883q^{49} + 4572q^{51} + 9174q^{53} + 4800q^{55} - 16440q^{57} - 34980q^{59} + 9838q^{61} - 24426q^{63} - 27650q^{65} + 33722q^{67} - 9396q^{69} - 70212q^{71} + 21986q^{73} + 3750q^{75} + 22656q^{77} - 4520q^{79} + 34101q^{81} - 109074q^{83} + 19050q^{85} - 35460q^{87} + 38490q^{89} - 130508q^{91} + 41208q^{93} - 68500q^{95} - 1918q^{97} - 39744q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 6.00000 0 25.0000 0 118.000 0 −207.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.6.a.k 1
4.b odd 2 1 320.6.a.f 1
8.b even 2 1 80.6.a.c 1
8.d odd 2 1 10.6.a.c 1
24.f even 2 1 90.6.a.b 1
24.h odd 2 1 720.6.a.v 1
40.e odd 2 1 50.6.a.b 1
40.f even 2 1 400.6.a.i 1
40.i odd 4 2 400.6.c.i 2
40.k even 4 2 50.6.b.b 2
56.e even 2 1 490.6.a.k 1
120.m even 2 1 450.6.a.u 1
120.q odd 4 2 450.6.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.a.c 1 8.d odd 2 1
50.6.a.b 1 40.e odd 2 1
50.6.b.b 2 40.k even 4 2
80.6.a.c 1 8.b even 2 1
90.6.a.b 1 24.f even 2 1
320.6.a.f 1 4.b odd 2 1
320.6.a.k 1 1.a even 1 1 trivial
400.6.a.i 1 40.f even 2 1
400.6.c.i 2 40.i odd 4 2
450.6.a.u 1 120.m even 2 1
450.6.c.f 2 120.q odd 4 2
490.6.a.k 1 56.e even 2 1
720.6.a.v 1 24.h odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 6 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(320))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 6 T + 243 T^{2} \)
$5$ \( 1 - 25 T \)
$7$ \( 1 - 118 T + 16807 T^{2} \)
$11$ \( 1 - 192 T + 161051 T^{2} \)
$13$ \( 1 + 1106 T + 371293 T^{2} \)
$17$ \( 1 - 762 T + 1419857 T^{2} \)
$19$ \( 1 + 2740 T + 2476099 T^{2} \)
$23$ \( 1 + 1566 T + 6436343 T^{2} \)
$29$ \( 1 + 5910 T + 20511149 T^{2} \)
$31$ \( 1 - 6868 T + 28629151 T^{2} \)
$37$ \( 1 - 5518 T + 69343957 T^{2} \)
$41$ \( 1 + 378 T + 115856201 T^{2} \)
$43$ \( 1 + 2434 T + 147008443 T^{2} \)
$47$ \( 1 + 13122 T + 229345007 T^{2} \)
$53$ \( 1 - 9174 T + 418195493 T^{2} \)
$59$ \( 1 + 34980 T + 714924299 T^{2} \)
$61$ \( 1 - 9838 T + 844596301 T^{2} \)
$67$ \( 1 - 33722 T + 1350125107 T^{2} \)
$71$ \( 1 + 70212 T + 1804229351 T^{2} \)
$73$ \( 1 - 21986 T + 2073071593 T^{2} \)
$79$ \( 1 + 4520 T + 3077056399 T^{2} \)
$83$ \( 1 + 109074 T + 3939040643 T^{2} \)
$89$ \( 1 - 38490 T + 5584059449 T^{2} \)
$97$ \( 1 + 1918 T + 8587340257 T^{2} \)
show more
show less