# Properties

 Label 320.4.a.g Level $320$ Weight $4$ Character orbit 320.a Self dual yes Analytic conductor $18.881$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [320,4,Mod(1,320)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(320, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("320.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$320 = 2^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 320.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.8806112018$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 5) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{3} + 5 q^{5} + 6 q^{7} - 23 q^{9}+O(q^{10})$$ q - 2 * q^3 + 5 * q^5 + 6 * q^7 - 23 * q^9 $$q - 2 q^{3} + 5 q^{5} + 6 q^{7} - 23 q^{9} - 32 q^{11} + 38 q^{13} - 10 q^{15} + 26 q^{17} - 100 q^{19} - 12 q^{21} - 78 q^{23} + 25 q^{25} + 100 q^{27} + 50 q^{29} - 108 q^{31} + 64 q^{33} + 30 q^{35} - 266 q^{37} - 76 q^{39} + 22 q^{41} - 442 q^{43} - 115 q^{45} - 514 q^{47} - 307 q^{49} - 52 q^{51} - 2 q^{53} - 160 q^{55} + 200 q^{57} - 500 q^{59} + 518 q^{61} - 138 q^{63} + 190 q^{65} - 126 q^{67} + 156 q^{69} + 412 q^{71} - 878 q^{73} - 50 q^{75} - 192 q^{77} + 600 q^{79} + 421 q^{81} - 282 q^{83} + 130 q^{85} - 100 q^{87} - 150 q^{89} + 228 q^{91} + 216 q^{93} - 500 q^{95} + 386 q^{97} + 736 q^{99}+O(q^{100})$$ q - 2 * q^3 + 5 * q^5 + 6 * q^7 - 23 * q^9 - 32 * q^11 + 38 * q^13 - 10 * q^15 + 26 * q^17 - 100 * q^19 - 12 * q^21 - 78 * q^23 + 25 * q^25 + 100 * q^27 + 50 * q^29 - 108 * q^31 + 64 * q^33 + 30 * q^35 - 266 * q^37 - 76 * q^39 + 22 * q^41 - 442 * q^43 - 115 * q^45 - 514 * q^47 - 307 * q^49 - 52 * q^51 - 2 * q^53 - 160 * q^55 + 200 * q^57 - 500 * q^59 + 518 * q^61 - 138 * q^63 + 190 * q^65 - 126 * q^67 + 156 * q^69 + 412 * q^71 - 878 * q^73 - 50 * q^75 - 192 * q^77 + 600 * q^79 + 421 * q^81 - 282 * q^83 + 130 * q^85 - 100 * q^87 - 150 * q^89 + 228 * q^91 + 216 * q^93 - 500 * q^95 + 386 * q^97 + 736 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −2.00000 0 5.00000 0 6.00000 0 −23.0000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.4.a.g 1
4.b odd 2 1 320.4.a.h 1
5.b even 2 1 1600.4.a.bi 1
8.b even 2 1 5.4.a.a 1
8.d odd 2 1 80.4.a.d 1
16.e even 4 2 1280.4.d.e 2
16.f odd 4 2 1280.4.d.l 2
20.d odd 2 1 1600.4.a.s 1
24.f even 2 1 720.4.a.u 1
24.h odd 2 1 45.4.a.d 1
40.e odd 2 1 400.4.a.m 1
40.f even 2 1 25.4.a.c 1
40.i odd 4 2 25.4.b.a 2
40.k even 4 2 400.4.c.k 2
56.h odd 2 1 245.4.a.a 1
56.j odd 6 2 245.4.e.g 2
56.p even 6 2 245.4.e.f 2
72.j odd 6 2 405.4.e.c 2
72.n even 6 2 405.4.e.l 2
88.b odd 2 1 605.4.a.d 1
104.e even 2 1 845.4.a.b 1
120.i odd 2 1 225.4.a.b 1
120.w even 4 2 225.4.b.c 2
136.h even 2 1 1445.4.a.a 1
152.g odd 2 1 1805.4.a.h 1
168.i even 2 1 2205.4.a.q 1
280.c odd 2 1 1225.4.a.k 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 8.b even 2 1
25.4.a.c 1 40.f even 2 1
25.4.b.a 2 40.i odd 4 2
45.4.a.d 1 24.h odd 2 1
80.4.a.d 1 8.d odd 2 1
225.4.a.b 1 120.i odd 2 1
225.4.b.c 2 120.w even 4 2
245.4.a.a 1 56.h odd 2 1
245.4.e.f 2 56.p even 6 2
245.4.e.g 2 56.j odd 6 2
320.4.a.g 1 1.a even 1 1 trivial
320.4.a.h 1 4.b odd 2 1
400.4.a.m 1 40.e odd 2 1
400.4.c.k 2 40.k even 4 2
405.4.e.c 2 72.j odd 6 2
405.4.e.l 2 72.n even 6 2
605.4.a.d 1 88.b odd 2 1
720.4.a.u 1 24.f even 2 1
845.4.a.b 1 104.e even 2 1
1225.4.a.k 1 280.c odd 2 1
1280.4.d.e 2 16.e even 4 2
1280.4.d.l 2 16.f odd 4 2
1445.4.a.a 1 136.h even 2 1
1600.4.a.s 1 20.d odd 2 1
1600.4.a.bi 1 5.b even 2 1
1805.4.a.h 1 152.g odd 2 1
2205.4.a.q 1 168.i even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(320))$$:

 $$T_{3} + 2$$ T3 + 2 $$T_{7} - 6$$ T7 - 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 2$$
$5$ $$T - 5$$
$7$ $$T - 6$$
$11$ $$T + 32$$
$13$ $$T - 38$$
$17$ $$T - 26$$
$19$ $$T + 100$$
$23$ $$T + 78$$
$29$ $$T - 50$$
$31$ $$T + 108$$
$37$ $$T + 266$$
$41$ $$T - 22$$
$43$ $$T + 442$$
$47$ $$T + 514$$
$53$ $$T + 2$$
$59$ $$T + 500$$
$61$ $$T - 518$$
$67$ $$T + 126$$
$71$ $$T - 412$$
$73$ $$T + 878$$
$79$ $$T - 600$$
$83$ $$T + 282$$
$89$ $$T + 150$$
$97$ $$T - 386$$