Properties

Label 320.3.p.a
Level $320$
Weight $3$
Character orbit 320.p
Analytic conductor $8.719$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 320.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.71936845953\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + 2 i ) q^{3} + 5 i q^{5} + ( -2 - 2 i ) q^{7} + i q^{9} +O(q^{10})\) \( q + ( -2 + 2 i ) q^{3} + 5 i q^{5} + ( -2 - 2 i ) q^{7} + i q^{9} -8 q^{11} + ( -3 + 3 i ) q^{13} + ( -10 - 10 i ) q^{15} + ( 7 + 7 i ) q^{17} -20 i q^{19} + 8 q^{21} + ( 2 - 2 i ) q^{23} -25 q^{25} + ( -20 - 20 i ) q^{27} -40 i q^{29} -52 q^{31} + ( 16 - 16 i ) q^{33} + ( 10 - 10 i ) q^{35} + ( 3 + 3 i ) q^{37} -12 i q^{39} -8 q^{41} + ( -42 + 42 i ) q^{43} -5 q^{45} + ( 18 + 18 i ) q^{47} -41 i q^{49} -28 q^{51} + ( -53 + 53 i ) q^{53} -40 i q^{55} + ( 40 + 40 i ) q^{57} -20 i q^{59} + 48 q^{61} + ( 2 - 2 i ) q^{63} + ( -15 - 15 i ) q^{65} + ( 62 + 62 i ) q^{67} + 8 i q^{69} + 28 q^{71} + ( -47 + 47 i ) q^{73} + ( 50 - 50 i ) q^{75} + ( 16 + 16 i ) q^{77} + 71 q^{81} + ( 18 - 18 i ) q^{83} + ( -35 + 35 i ) q^{85} + ( 80 + 80 i ) q^{87} + 80 i q^{89} + 12 q^{91} + ( 104 - 104 i ) q^{93} + 100 q^{95} + ( -63 - 63 i ) q^{97} -8 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{3} - 4q^{7} + O(q^{10}) \) \( 2q - 4q^{3} - 4q^{7} - 16q^{11} - 6q^{13} - 20q^{15} + 14q^{17} + 16q^{21} + 4q^{23} - 50q^{25} - 40q^{27} - 104q^{31} + 32q^{33} + 20q^{35} + 6q^{37} - 16q^{41} - 84q^{43} - 10q^{45} + 36q^{47} - 56q^{51} - 106q^{53} + 80q^{57} + 96q^{61} + 4q^{63} - 30q^{65} + 124q^{67} + 56q^{71} - 94q^{73} + 100q^{75} + 32q^{77} + 142q^{81} + 36q^{83} - 70q^{85} + 160q^{87} + 24q^{91} + 208q^{93} + 200q^{95} - 126q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(i\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
1.00000i
1.00000i
0 −2.00000 2.00000i 0 5.00000i 0 −2.00000 + 2.00000i 0 1.00000i 0
257.1 0 −2.00000 + 2.00000i 0 5.00000i 0 −2.00000 2.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.3.p.a 2
4.b odd 2 1 320.3.p.h 2
5.c odd 4 1 inner 320.3.p.a 2
8.b even 2 1 80.3.p.c 2
8.d odd 2 1 10.3.c.a 2
20.e even 4 1 320.3.p.h 2
24.f even 2 1 90.3.g.b 2
24.h odd 2 1 720.3.bh.c 2
40.e odd 2 1 50.3.c.c 2
40.f even 2 1 400.3.p.b 2
40.i odd 4 1 80.3.p.c 2
40.i odd 4 1 400.3.p.b 2
40.k even 4 1 10.3.c.a 2
40.k even 4 1 50.3.c.c 2
56.e even 2 1 490.3.f.b 2
120.m even 2 1 450.3.g.b 2
120.q odd 4 1 90.3.g.b 2
120.q odd 4 1 450.3.g.b 2
120.w even 4 1 720.3.bh.c 2
280.y odd 4 1 490.3.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.3.c.a 2 8.d odd 2 1
10.3.c.a 2 40.k even 4 1
50.3.c.c 2 40.e odd 2 1
50.3.c.c 2 40.k even 4 1
80.3.p.c 2 8.b even 2 1
80.3.p.c 2 40.i odd 4 1
90.3.g.b 2 24.f even 2 1
90.3.g.b 2 120.q odd 4 1
320.3.p.a 2 1.a even 1 1 trivial
320.3.p.a 2 5.c odd 4 1 inner
320.3.p.h 2 4.b odd 2 1
320.3.p.h 2 20.e even 4 1
400.3.p.b 2 40.f even 2 1
400.3.p.b 2 40.i odd 4 1
450.3.g.b 2 120.m even 2 1
450.3.g.b 2 120.q odd 4 1
490.3.f.b 2 56.e even 2 1
490.3.f.b 2 280.y odd 4 1
720.3.bh.c 2 24.h odd 2 1
720.3.bh.c 2 120.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(320, [\chi])\):

\( T_{3}^{2} + 4 T_{3} + 8 \)
\( T_{7}^{2} + 4 T_{7} + 8 \)
\( T_{13}^{2} + 6 T_{13} + 18 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 4 T + 8 T^{2} + 36 T^{3} + 81 T^{4} \)
$5$ \( 1 + 25 T^{2} \)
$7$ \( 1 + 4 T + 8 T^{2} + 196 T^{3} + 2401 T^{4} \)
$11$ \( ( 1 + 8 T + 121 T^{2} )^{2} \)
$13$ \( 1 + 6 T + 18 T^{2} + 1014 T^{3} + 28561 T^{4} \)
$17$ \( ( 1 - 30 T + 289 T^{2} )( 1 + 16 T + 289 T^{2} ) \)
$19$ \( 1 - 322 T^{2} + 130321 T^{4} \)
$23$ \( 1 - 4 T + 8 T^{2} - 2116 T^{3} + 279841 T^{4} \)
$29$ \( ( 1 - 42 T + 841 T^{2} )( 1 + 42 T + 841 T^{2} ) \)
$31$ \( ( 1 + 52 T + 961 T^{2} )^{2} \)
$37$ \( 1 - 6 T + 18 T^{2} - 8214 T^{3} + 1874161 T^{4} \)
$41$ \( ( 1 + 8 T + 1681 T^{2} )^{2} \)
$43$ \( 1 + 84 T + 3528 T^{2} + 155316 T^{3} + 3418801 T^{4} \)
$47$ \( 1 - 36 T + 648 T^{2} - 79524 T^{3} + 4879681 T^{4} \)
$53$ \( ( 1 + 53 T )^{2}( 1 + 2809 T^{2} ) \)
$59$ \( 1 - 6562 T^{2} + 12117361 T^{4} \)
$61$ \( ( 1 - 48 T + 3721 T^{2} )^{2} \)
$67$ \( 1 - 124 T + 7688 T^{2} - 556636 T^{3} + 20151121 T^{4} \)
$71$ \( ( 1 - 28 T + 5041 T^{2} )^{2} \)
$73$ \( 1 + 94 T + 4418 T^{2} + 500926 T^{3} + 28398241 T^{4} \)
$79$ \( ( 1 - 79 T )^{2}( 1 + 79 T )^{2} \)
$83$ \( 1 - 36 T + 648 T^{2} - 248004 T^{3} + 47458321 T^{4} \)
$89$ \( 1 - 9442 T^{2} + 62742241 T^{4} \)
$97$ \( 1 + 126 T + 7938 T^{2} + 1185534 T^{3} + 88529281 T^{4} \)
show more
show less