# Properties

 Label 320.3.h.f.319.2 Level $320$ Weight $3$ Character 320.319 Analytic conductor $8.719$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$320 = 2^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 320.h (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.71936845953$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.1827904.1 Defining polynomial: $$x^{6} + 9x^{4} + 14x^{2} + 1$$ x^6 + 9*x^4 + 14*x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{9}$$ Twist minimal: no (minimal twist has level 160) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 319.2 Root $$-0.273891i$$ of defining polynomial Character $$\chi$$ $$=$$ 320.319 Dual form 320.3.h.f.319.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-5.30219 q^{3} +(1.54778 + 4.75441i) q^{5} -0.206625 q^{7} +19.1132 q^{9} +O(q^{10})$$ $$q-5.30219 q^{3} +(1.54778 + 4.75441i) q^{5} -0.206625 q^{7} +19.1132 q^{9} +15.0176i q^{11} -11.6999i q^{13} +(-8.20662 - 25.2087i) q^{15} +18.1911i q^{17} -19.3999i q^{19} +1.09556 q^{21} -27.2242 q^{23} +(-20.2087 + 14.7176i) q^{25} -53.6220 q^{27} -44.4175 q^{29} -20.3822i q^{31} -79.6262i q^{33} +(-0.319810 - 0.982377i) q^{35} -18.1089i q^{37} +62.0352i q^{39} -32.3043 q^{41} +4.06244 q^{43} +(29.5830 + 90.8718i) q^{45} +5.37588 q^{47} -48.9573 q^{49} -96.4527i q^{51} -79.1703i q^{53} +(-71.3999 + 23.2440i) q^{55} +102.862i q^{57} +83.3999i q^{59} +36.7486 q^{61} -3.94925 q^{63} +(55.6262 - 18.1089i) q^{65} +4.51518 q^{67} +144.348 q^{69} -41.6530i q^{71} -41.5910i q^{73} +(107.151 - 78.0352i) q^{75} -3.10301i q^{77} +15.5473i q^{79} +112.295 q^{81} +50.9862 q^{83} +(-86.4880 + 28.1559i) q^{85} +235.510 q^{87} +10.8885 q^{89} +2.41749i q^{91} +108.070i q^{93} +(92.2349 - 30.0268i) q^{95} +12.1559i q^{97} +287.035i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 4 q^{3} + 2 q^{5} + 12 q^{7} + 18 q^{9}+O(q^{10})$$ 6 * q - 4 * q^3 + 2 * q^5 + 12 * q^7 + 18 * q^9 $$6 q - 4 q^{3} + 2 q^{5} + 12 q^{7} + 18 q^{9} - 36 q^{15} - 8 q^{21} - 68 q^{23} - 10 q^{25} - 184 q^{27} - 44 q^{29} + 108 q^{35} - 68 q^{41} + 76 q^{43} + 6 q^{45} + 268 q^{47} - 62 q^{49} - 288 q^{55} + 100 q^{61} - 172 q^{63} - 308 q^{67} + 184 q^{69} + 284 q^{75} + 238 q^{81} + 204 q^{83} + 32 q^{85} + 584 q^{87} + 76 q^{89} - 32 q^{95}+O(q^{100})$$ 6 * q - 4 * q^3 + 2 * q^5 + 12 * q^7 + 18 * q^9 - 36 * q^15 - 8 * q^21 - 68 * q^23 - 10 * q^25 - 184 * q^27 - 44 * q^29 + 108 * q^35 - 68 * q^41 + 76 * q^43 + 6 * q^45 + 268 * q^47 - 62 * q^49 - 288 * q^55 + 100 * q^61 - 172 * q^63 - 308 * q^67 + 184 * q^69 + 284 * q^75 + 238 * q^81 + 204 * q^83 + 32 * q^85 + 584 * q^87 + 76 * q^89 - 32 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/320\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$257$$ $$261$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −5.30219 −1.76740 −0.883698 0.468058i $$-0.844954\pi$$
−0.883698 + 0.468058i $$0.844954\pi$$
$$4$$ 0 0
$$5$$ 1.54778 + 4.75441i 0.309556 + 0.950881i
$$6$$ 0 0
$$7$$ −0.206625 −0.0295178 −0.0147589 0.999891i $$-0.504698\pi$$
−0.0147589 + 0.999891i $$0.504698\pi$$
$$8$$ 0 0
$$9$$ 19.1132 2.12369
$$10$$ 0 0
$$11$$ 15.0176i 1.36524i 0.730774 + 0.682619i $$0.239159\pi$$
−0.730774 + 0.682619i $$0.760841\pi$$
$$12$$ 0 0
$$13$$ 11.6999i 0.899995i −0.893030 0.449998i $$-0.851425\pi$$
0.893030 0.449998i $$-0.148575\pi$$
$$14$$ 0 0
$$15$$ −8.20662 25.2087i −0.547108 1.68058i
$$16$$ 0 0
$$17$$ 18.1911i 1.07007i 0.844831 + 0.535033i $$0.179701\pi$$
−0.844831 + 0.535033i $$0.820299\pi$$
$$18$$ 0 0
$$19$$ 19.3999i 1.02105i −0.859864 0.510523i $$-0.829452\pi$$
0.859864 0.510523i $$-0.170548\pi$$
$$20$$ 0 0
$$21$$ 1.09556 0.0521696
$$22$$ 0 0
$$23$$ −27.2242 −1.18366 −0.591831 0.806062i $$-0.701595\pi$$
−0.591831 + 0.806062i $$0.701595\pi$$
$$24$$ 0 0
$$25$$ −20.2087 + 14.7176i −0.808350 + 0.588702i
$$26$$ 0 0
$$27$$ −53.6220 −1.98600
$$28$$ 0 0
$$29$$ −44.4175 −1.53164 −0.765819 0.643056i $$-0.777666\pi$$
−0.765819 + 0.643056i $$0.777666\pi$$
$$30$$ 0 0
$$31$$ 20.3822i 0.657492i −0.944418 0.328746i $$-0.893374\pi$$
0.944418 0.328746i $$-0.106626\pi$$
$$32$$ 0 0
$$33$$ 79.6262i 2.41292i
$$34$$ 0 0
$$35$$ −0.319810 0.982377i −0.00913742 0.0280679i
$$36$$ 0 0
$$37$$ 18.1089i 0.489431i −0.969595 0.244715i $$-0.921305\pi$$
0.969595 0.244715i $$-0.0786945\pi$$
$$38$$ 0 0
$$39$$ 62.0352i 1.59065i
$$40$$ 0 0
$$41$$ −32.3043 −0.787910 −0.393955 0.919130i $$-0.628893\pi$$
−0.393955 + 0.919130i $$0.628893\pi$$
$$42$$ 0 0
$$43$$ 4.06244 0.0944753 0.0472377 0.998884i $$-0.484958\pi$$
0.0472377 + 0.998884i $$0.484958\pi$$
$$44$$ 0 0
$$45$$ 29.5830 + 90.8718i 0.657401 + 2.01937i
$$46$$ 0 0
$$47$$ 5.37588 0.114380 0.0571902 0.998363i $$-0.481786\pi$$
0.0571902 + 0.998363i $$0.481786\pi$$
$$48$$ 0 0
$$49$$ −48.9573 −0.999129
$$50$$ 0 0
$$51$$ 96.4527i 1.89123i
$$52$$ 0 0
$$53$$ 79.1703i 1.49378i −0.664948 0.746890i $$-0.731546\pi$$
0.664948 0.746890i $$-0.268454\pi$$
$$54$$ 0 0
$$55$$ −71.3999 + 23.2440i −1.29818 + 0.422618i
$$56$$ 0 0
$$57$$ 102.862i 1.80459i
$$58$$ 0 0
$$59$$ 83.3999i 1.41356i 0.707435 + 0.706779i $$0.249852\pi$$
−0.707435 + 0.706779i $$0.750148\pi$$
$$60$$ 0 0
$$61$$ 36.7486 0.602435 0.301218 0.953555i $$-0.402607\pi$$
0.301218 + 0.953555i $$0.402607\pi$$
$$62$$ 0 0
$$63$$ −3.94925 −0.0626866
$$64$$ 0 0
$$65$$ 55.6262 18.1089i 0.855788 0.278599i
$$66$$ 0 0
$$67$$ 4.51518 0.0673907 0.0336954 0.999432i $$-0.489272\pi$$
0.0336954 + 0.999432i $$0.489272\pi$$
$$68$$ 0 0
$$69$$ 144.348 2.09200
$$70$$ 0 0
$$71$$ 41.6530i 0.586662i −0.956011 0.293331i $$-0.905236\pi$$
0.956011 0.293331i $$-0.0947638\pi$$
$$72$$ 0 0
$$73$$ 41.5910i 0.569740i −0.958566 0.284870i $$-0.908050\pi$$
0.958566 0.284870i $$-0.0919504\pi$$
$$74$$ 0 0
$$75$$ 107.151 78.0352i 1.42867 1.04047i
$$76$$ 0 0
$$77$$ 3.10301i 0.0402988i
$$78$$ 0 0
$$79$$ 15.5473i 0.196801i 0.995147 + 0.0984004i $$0.0313726\pi$$
−0.995147 + 0.0984004i $$0.968627\pi$$
$$80$$ 0 0
$$81$$ 112.295 1.38636
$$82$$ 0 0
$$83$$ 50.9862 0.614291 0.307146 0.951663i $$-0.400626\pi$$
0.307146 + 0.951663i $$0.400626\pi$$
$$84$$ 0 0
$$85$$ −86.4880 + 28.1559i −1.01751 + 0.331246i
$$86$$ 0 0
$$87$$ 235.510 2.70701
$$88$$ 0 0
$$89$$ 10.8885 0.122343 0.0611713 0.998127i $$-0.480516\pi$$
0.0611713 + 0.998127i $$0.480516\pi$$
$$90$$ 0 0
$$91$$ 2.41749i 0.0265659i
$$92$$ 0 0
$$93$$ 108.070i 1.16205i
$$94$$ 0 0
$$95$$ 92.2349 30.0268i 0.970893 0.316071i
$$96$$ 0 0
$$97$$ 12.1559i 0.125318i 0.998035 + 0.0626592i $$0.0199581\pi$$
−0.998035 + 0.0626592i $$0.980042\pi$$
$$98$$ 0 0
$$99$$ 287.035i 2.89934i
$$100$$ 0 0
$$101$$ −127.723 −1.26459 −0.632294 0.774728i $$-0.717887\pi$$
−0.632294 + 0.774728i $$0.717887\pi$$
$$102$$ 0 0
$$103$$ 4.77575 0.0463665 0.0231833 0.999731i $$-0.492620\pi$$
0.0231833 + 0.999731i $$0.492620\pi$$
$$104$$ 0 0
$$105$$ 1.69569 + 5.20875i 0.0161494 + 0.0496071i
$$106$$ 0 0
$$107$$ −107.213 −1.00199 −0.500997 0.865449i $$-0.667033\pi$$
−0.500997 + 0.865449i $$0.667033\pi$$
$$108$$ 0 0
$$109$$ −53.6689 −0.492376 −0.246188 0.969222i $$-0.579178\pi$$
−0.246188 + 0.969222i $$0.579178\pi$$
$$110$$ 0 0
$$111$$ 96.0170i 0.865018i
$$112$$ 0 0
$$113$$ 20.5063i 0.181471i −0.995875 0.0907356i $$-0.971078\pi$$
0.995875 0.0907356i $$-0.0289218\pi$$
$$114$$ 0 0
$$115$$ −42.1372 129.435i −0.366410 1.12552i
$$116$$ 0 0
$$117$$ 223.623i 1.91131i
$$118$$ 0 0
$$119$$ 3.75873i 0.0315860i
$$120$$ 0 0
$$121$$ −104.529 −0.863876
$$122$$ 0 0
$$123$$ 171.283 1.39255
$$124$$ 0 0
$$125$$ −101.252 73.3010i −0.810016 0.586408i
$$126$$ 0 0
$$127$$ −138.477 −1.09037 −0.545184 0.838316i $$-0.683540\pi$$
−0.545184 + 0.838316i $$0.683540\pi$$
$$128$$ 0 0
$$129$$ −21.5398 −0.166975
$$130$$ 0 0
$$131$$ 219.105i 1.67256i 0.548304 + 0.836279i $$0.315274\pi$$
−0.548304 + 0.836279i $$0.684726\pi$$
$$132$$ 0 0
$$133$$ 4.00849i 0.0301390i
$$134$$ 0 0
$$135$$ −82.9951 254.941i −0.614779 1.88845i
$$136$$ 0 0
$$137$$ 59.7821i 0.436366i 0.975908 + 0.218183i $$0.0700129\pi$$
−0.975908 + 0.218183i $$0.929987\pi$$
$$138$$ 0 0
$$139$$ 26.6524i 0.191744i −0.995394 0.0958718i $$-0.969436\pi$$
0.995394 0.0958718i $$-0.0305639\pi$$
$$140$$ 0 0
$$141$$ −28.5039 −0.202155
$$142$$ 0 0
$$143$$ 175.705 1.22871
$$144$$ 0 0
$$145$$ −68.7486 211.179i −0.474128 1.45641i
$$146$$ 0 0
$$147$$ 259.581 1.76586
$$148$$ 0 0
$$149$$ −143.463 −0.962838 −0.481419 0.876490i $$-0.659879\pi$$
−0.481419 + 0.876490i $$0.659879\pi$$
$$150$$ 0 0
$$151$$ 83.4937i 0.552939i −0.961023 0.276469i $$-0.910836\pi$$
0.961023 0.276469i $$-0.0891644\pi$$
$$152$$ 0 0
$$153$$ 347.690i 2.27249i
$$154$$ 0 0
$$155$$ 96.9055 31.5473i 0.625197 0.203531i
$$156$$ 0 0
$$157$$ 169.673i 1.08072i 0.841434 + 0.540360i $$0.181712\pi$$
−0.841434 + 0.540360i $$0.818288\pi$$
$$158$$ 0 0
$$159$$ 419.776i 2.64010i
$$160$$ 0 0
$$161$$ 5.62520 0.0349391
$$162$$ 0 0
$$163$$ −275.478 −1.69005 −0.845026 0.534726i $$-0.820415\pi$$
−0.845026 + 0.534726i $$0.820415\pi$$
$$164$$ 0 0
$$165$$ 378.575 123.244i 2.29440 0.746933i
$$166$$ 0 0
$$167$$ 132.481 0.793299 0.396650 0.917970i $$-0.370173\pi$$
0.396650 + 0.917970i $$0.370173\pi$$
$$168$$ 0 0
$$169$$ 32.1115 0.190009
$$170$$ 0 0
$$171$$ 370.793i 2.16838i
$$172$$ 0 0
$$173$$ 272.614i 1.57580i 0.615801 + 0.787901i $$0.288832\pi$$
−0.615801 + 0.787901i $$0.711168\pi$$
$$174$$ 0 0
$$175$$ 4.17562 3.04101i 0.0238607 0.0173772i
$$176$$ 0 0
$$177$$ 442.202i 2.49831i
$$178$$ 0 0
$$179$$ 157.523i 0.880014i −0.897994 0.440007i $$-0.854976\pi$$
0.897994 0.440007i $$-0.145024\pi$$
$$180$$ 0 0
$$181$$ 335.063 1.85118 0.925590 0.378529i $$-0.123570\pi$$
0.925590 + 0.378529i $$0.123570\pi$$
$$182$$ 0 0
$$183$$ −194.848 −1.06474
$$184$$ 0 0
$$185$$ 86.0972 28.0287i 0.465391 0.151506i
$$186$$ 0 0
$$187$$ −273.187 −1.46090
$$188$$ 0 0
$$189$$ 11.0796 0.0586223
$$190$$ 0 0
$$191$$ 298.575i 1.56322i −0.623766 0.781611i $$-0.714398\pi$$
0.623766 0.781611i $$-0.285602\pi$$
$$192$$ 0 0
$$193$$ 191.915i 0.994376i 0.867643 + 0.497188i $$0.165634\pi$$
−0.867643 + 0.497188i $$0.834366\pi$$
$$194$$ 0 0
$$195$$ −294.941 + 96.0170i −1.51252 + 0.492395i
$$196$$ 0 0
$$197$$ 59.2472i 0.300747i 0.988629 + 0.150374i $$0.0480477\pi$$
−0.988629 + 0.150374i $$0.951952\pi$$
$$198$$ 0 0
$$199$$ 309.100i 1.55327i 0.629953 + 0.776633i $$0.283074\pi$$
−0.629953 + 0.776633i $$0.716926\pi$$
$$200$$ 0 0
$$201$$ −23.9403 −0.119106
$$202$$ 0 0
$$203$$ 9.17775 0.0452106
$$204$$ 0 0
$$205$$ −50.0000 153.588i −0.243902 0.749209i
$$206$$ 0 0
$$207$$ −520.342 −2.51373
$$208$$ 0 0
$$209$$ 291.340 1.39397
$$210$$ 0 0
$$211$$ 205.693i 0.974850i −0.873165 0.487425i $$-0.837936\pi$$
0.873165 0.487425i $$-0.162064\pi$$
$$212$$ 0 0
$$213$$ 220.852i 1.03686i
$$214$$ 0 0
$$215$$ 6.28777 + 19.3145i 0.0292454 + 0.0898348i
$$216$$ 0 0
$$217$$ 4.21147i 0.0194077i
$$218$$ 0 0
$$219$$ 220.523i 1.00696i
$$220$$ 0 0
$$221$$ 212.835 0.963054
$$222$$ 0 0
$$223$$ −228.723 −1.02567 −0.512833 0.858488i $$-0.671404\pi$$
−0.512833 + 0.858488i $$0.671404\pi$$
$$224$$ 0 0
$$225$$ −386.254 + 281.299i −1.71668 + 1.25022i
$$226$$ 0 0
$$227$$ 282.403 1.24407 0.622033 0.782991i $$-0.286307\pi$$
0.622033 + 0.782991i $$0.286307\pi$$
$$228$$ 0 0
$$229$$ −49.2525 −0.215076 −0.107538 0.994201i $$-0.534297\pi$$
−0.107538 + 0.994201i $$0.534297\pi$$
$$230$$ 0 0
$$231$$ 16.4527i 0.0712240i
$$232$$ 0 0
$$233$$ 124.273i 0.533363i −0.963785 0.266681i $$-0.914073\pi$$
0.963785 0.266681i $$-0.0859271\pi$$
$$234$$ 0 0
$$235$$ 8.32069 + 25.5591i 0.0354072 + 0.108762i
$$236$$ 0 0
$$237$$ 82.4345i 0.347825i
$$238$$ 0 0
$$239$$ 80.4527i 0.336622i −0.985734 0.168311i $$-0.946169\pi$$
0.985734 0.168311i $$-0.0538313\pi$$
$$240$$ 0 0
$$241$$ −1.20979 −0.00501988 −0.00250994 0.999997i $$-0.500799\pi$$
−0.00250994 + 0.999997i $$0.500799\pi$$
$$242$$ 0 0
$$243$$ −112.812 −0.464247
$$244$$ 0 0
$$245$$ −75.7752 232.763i −0.309287 0.950053i
$$246$$ 0 0
$$247$$ −226.977 −0.918936
$$248$$ 0 0
$$249$$ −270.338 −1.08570
$$250$$ 0 0
$$251$$ 211.853i 0.844034i 0.906588 + 0.422017i $$0.138678\pi$$
−0.906588 + 0.422017i $$0.861322\pi$$
$$252$$ 0 0
$$253$$ 408.843i 1.61598i
$$254$$ 0 0
$$255$$ 458.575 149.288i 1.79834 0.585442i
$$256$$ 0 0
$$257$$ 182.646i 0.710685i 0.934736 + 0.355342i $$0.115636\pi$$
−0.934736 + 0.355342i $$0.884364\pi$$
$$258$$ 0 0
$$259$$ 3.74175i 0.0144469i
$$260$$ 0 0
$$261$$ −848.960 −3.25272
$$262$$ 0 0
$$263$$ 74.6636 0.283892 0.141946 0.989874i $$-0.454664\pi$$
0.141946 + 0.989874i $$0.454664\pi$$
$$264$$ 0 0
$$265$$ 376.408 122.538i 1.42041 0.462409i
$$266$$ 0 0
$$267$$ −57.7329 −0.216228
$$268$$ 0 0
$$269$$ 184.089 0.684344 0.342172 0.939637i $$-0.388837\pi$$
0.342172 + 0.939637i $$0.388837\pi$$
$$270$$ 0 0
$$271$$ 234.746i 0.866222i −0.901341 0.433111i $$-0.857416\pi$$
0.901341 0.433111i $$-0.142584\pi$$
$$272$$ 0 0
$$273$$ 12.8180i 0.0469524i
$$274$$ 0 0
$$275$$ −221.023 303.487i −0.803719 1.10359i
$$276$$ 0 0
$$277$$ 452.208i 1.63252i 0.577684 + 0.816260i $$0.303957\pi$$
−0.577684 + 0.816260i $$0.696043\pi$$
$$278$$ 0 0
$$279$$ 389.570i 1.39631i
$$280$$ 0 0
$$281$$ −196.110 −0.697900 −0.348950 0.937141i $$-0.613462\pi$$
−0.348950 + 0.937141i $$0.613462\pi$$
$$282$$ 0 0
$$283$$ −418.449 −1.47862 −0.739309 0.673366i $$-0.764848\pi$$
−0.739309 + 0.673366i $$0.764848\pi$$
$$284$$ 0 0
$$285$$ −489.046 + 159.207i −1.71595 + 0.558623i
$$286$$ 0 0
$$287$$ 6.67486 0.0232574
$$288$$ 0 0
$$289$$ −41.9170 −0.145042
$$290$$ 0 0
$$291$$ 64.4527i 0.221487i
$$292$$ 0 0
$$293$$ 286.666i 0.978383i −0.872176 0.489191i $$-0.837292\pi$$
0.872176 0.489191i $$-0.162708\pi$$
$$294$$ 0 0
$$295$$ −396.517 + 129.085i −1.34412 + 0.437575i
$$296$$ 0 0
$$297$$ 805.275i 2.71136i
$$298$$ 0 0
$$299$$ 318.522i 1.06529i
$$300$$ 0 0
$$301$$ −0.839400 −0.00278870
$$302$$ 0 0
$$303$$ 677.214 2.23503
$$304$$ 0 0
$$305$$ 56.8787 + 174.718i 0.186488 + 0.572844i
$$306$$ 0 0
$$307$$ 261.715 0.852493 0.426247 0.904607i $$-0.359836\pi$$
0.426247 + 0.904607i $$0.359836\pi$$
$$308$$ 0 0
$$309$$ −25.3219 −0.0819480
$$310$$ 0 0
$$311$$ 578.904i 1.86143i 0.365747 + 0.930714i $$0.380813\pi$$
−0.365747 + 0.930714i $$0.619187\pi$$
$$312$$ 0 0
$$313$$ 99.3124i 0.317292i 0.987336 + 0.158646i $$0.0507129\pi$$
−0.987336 + 0.158646i $$0.949287\pi$$
$$314$$ 0 0
$$315$$ −6.11258 18.7764i −0.0194050 0.0596075i
$$316$$ 0 0
$$317$$ 191.623i 0.604489i 0.953230 + 0.302245i $$0.0977359\pi$$
−0.953230 + 0.302245i $$0.902264\pi$$
$$318$$ 0 0
$$319$$ 667.045i 2.09105i
$$320$$ 0 0
$$321$$ 568.466 1.77092
$$322$$ 0 0
$$323$$ 352.905 1.09259
$$324$$ 0 0
$$325$$ 172.194 + 236.441i 0.529829 + 0.727511i
$$326$$ 0 0
$$327$$ 284.563 0.870222
$$328$$ 0 0
$$329$$ −1.11079 −0.00337626
$$330$$ 0 0
$$331$$ 530.187i 1.60177i 0.598816 + 0.800886i $$0.295638\pi$$
−0.598816 + 0.800886i $$0.704362\pi$$
$$332$$ 0 0
$$333$$ 346.120i 1.03940i
$$334$$ 0 0
$$335$$ 6.98851 + 21.4670i 0.0208612 + 0.0640806i
$$336$$ 0 0
$$337$$ 487.427i 1.44637i 0.690653 + 0.723186i $$0.257323\pi$$
−0.690653 + 0.723186i $$0.742677\pi$$
$$338$$ 0 0
$$339$$ 108.728i 0.320731i
$$340$$ 0 0
$$341$$ 306.093 0.897633
$$342$$ 0 0
$$343$$ 20.2404 0.0590099
$$344$$ 0 0
$$345$$ 223.419 + 686.289i 0.647592 + 1.98924i
$$346$$ 0 0
$$347$$ 310.497 0.894804 0.447402 0.894333i $$-0.352349\pi$$
0.447402 + 0.894333i $$0.352349\pi$$
$$348$$ 0 0
$$349$$ 253.004 0.724941 0.362471 0.931995i $$-0.381933\pi$$
0.362471 + 0.931995i $$0.381933\pi$$
$$350$$ 0 0
$$351$$ 627.374i 1.78739i
$$352$$ 0 0
$$353$$ 322.639i 0.913992i −0.889469 0.456996i $$-0.848925\pi$$
0.889469 0.456996i $$-0.151075\pi$$
$$354$$ 0 0
$$355$$ 198.035 64.4697i 0.557846 0.181605i
$$356$$ 0 0
$$357$$ 19.9295i 0.0558250i
$$358$$ 0 0
$$359$$ 254.975i 0.710236i 0.934822 + 0.355118i $$0.115559\pi$$
−0.934822 + 0.355118i $$0.884441\pi$$
$$360$$ 0 0
$$361$$ −15.3550 −0.0425347
$$362$$ 0 0
$$363$$ 554.232 1.52681
$$364$$ 0 0
$$365$$ 197.740 64.3738i 0.541755 0.176366i
$$366$$ 0 0
$$367$$ −207.935 −0.566581 −0.283291 0.959034i $$-0.591426\pi$$
−0.283291 + 0.959034i $$0.591426\pi$$
$$368$$ 0 0
$$369$$ −617.438 −1.67327
$$370$$ 0 0
$$371$$ 16.3585i 0.0440931i
$$372$$ 0 0
$$373$$ 203.826i 0.546450i −0.961950 0.273225i $$-0.911910\pi$$
0.961950 0.273225i $$-0.0880903\pi$$
$$374$$ 0 0
$$375$$ 536.857 + 388.656i 1.43162 + 1.03642i
$$376$$ 0 0
$$377$$ 519.682i 1.37847i
$$378$$ 0 0
$$379$$ 454.099i 1.19815i −0.800692 0.599076i $$-0.795535\pi$$
0.800692 0.599076i $$-0.204465\pi$$
$$380$$ 0 0
$$381$$ 734.229 1.92711
$$382$$ 0 0
$$383$$ −541.569 −1.41402 −0.707009 0.707205i $$-0.749956\pi$$
−0.707009 + 0.707205i $$0.749956\pi$$
$$384$$ 0 0
$$385$$ 14.7530 4.80278i 0.0383194 0.0124748i
$$386$$ 0 0
$$387$$ 77.6462 0.200636
$$388$$ 0 0
$$389$$ 423.431 1.08851 0.544256 0.838919i $$-0.316812\pi$$
0.544256 + 0.838919i $$0.316812\pi$$
$$390$$ 0 0
$$391$$ 495.240i 1.26660i
$$392$$ 0 0
$$393$$ 1161.74i 2.95607i
$$394$$ 0 0
$$395$$ −73.9180 + 24.0638i −0.187134 + 0.0609209i
$$396$$ 0 0
$$397$$ 11.7772i 0.0296654i −0.999890 0.0148327i $$-0.995278\pi$$
0.999890 0.0148327i $$-0.00472157\pi$$
$$398$$ 0 0
$$399$$ 21.2538i 0.0532676i
$$400$$ 0 0
$$401$$ 127.442 0.317809 0.158905 0.987294i $$-0.449204\pi$$
0.158905 + 0.987294i $$0.449204\pi$$
$$402$$ 0 0
$$403$$ −238.471 −0.591739
$$404$$ 0 0
$$405$$ 173.808 + 533.897i 0.429156 + 1.31826i
$$406$$ 0 0
$$407$$ 271.953 0.668190
$$408$$ 0 0
$$409$$ 608.012 1.48658 0.743290 0.668969i $$-0.233264\pi$$
0.743290 + 0.668969i $$0.233264\pi$$
$$410$$ 0 0
$$411$$ 316.976i 0.771231i
$$412$$ 0 0
$$413$$ 17.2325i 0.0417251i
$$414$$ 0 0
$$415$$ 78.9155 + 242.409i 0.190158 + 0.584118i
$$416$$ 0 0
$$417$$ 141.316i 0.338887i
$$418$$ 0 0
$$419$$ 565.630i 1.34995i −0.737840 0.674976i $$-0.764154\pi$$
0.737840 0.674976i $$-0.235846\pi$$
$$420$$ 0 0
$$421$$ −711.356 −1.68968 −0.844841 0.535018i $$-0.820305\pi$$
−0.844841 + 0.535018i $$0.820305\pi$$
$$422$$ 0 0
$$423$$ 102.750 0.242908
$$424$$ 0 0
$$425$$ −267.729 367.620i −0.629950 0.864988i
$$426$$ 0 0
$$427$$ −7.59316 −0.0177826
$$428$$ 0 0
$$429$$ −931.622 −2.17161
$$430$$ 0 0
$$431$$ 309.254i 0.717526i 0.933429 + 0.358763i $$0.116801\pi$$
−0.933429 + 0.358763i $$0.883199\pi$$
$$432$$ 0 0
$$433$$ 187.374i 0.432735i 0.976312 + 0.216368i $$0.0694210\pi$$
−0.976312 + 0.216368i $$0.930579\pi$$
$$434$$ 0 0
$$435$$ 364.518 + 1119.71i 0.837972 + 2.57404i
$$436$$ 0 0
$$437$$ 528.147i 1.20857i
$$438$$ 0 0
$$439$$ 289.657i 0.659811i 0.944014 + 0.329906i $$0.107017\pi$$
−0.944014 + 0.329906i $$0.892983\pi$$
$$440$$ 0 0
$$441$$ −935.730 −2.12184
$$442$$ 0 0
$$443$$ 295.516 0.667079 0.333539 0.942736i $$-0.391757\pi$$
0.333539 + 0.942736i $$0.391757\pi$$
$$444$$ 0 0
$$445$$ 16.8530 + 51.7683i 0.0378719 + 0.116333i
$$446$$ 0 0
$$447$$ 760.667 1.70172
$$448$$ 0 0
$$449$$ −604.409 −1.34612 −0.673061 0.739587i $$-0.735021\pi$$
−0.673061 + 0.739587i $$0.735021\pi$$
$$450$$ 0 0
$$451$$ 485.134i 1.07569i
$$452$$ 0 0
$$453$$ 442.699i 0.977262i
$$454$$ 0 0
$$455$$ −11.4937 + 3.74175i −0.0252610 + 0.00822363i
$$456$$ 0 0
$$457$$ 392.507i 0.858877i −0.903096 0.429438i $$-0.858712\pi$$
0.903096 0.429438i $$-0.141288\pi$$
$$458$$ 0 0
$$459$$ 975.444i 2.12515i
$$460$$ 0 0
$$461$$ 400.277 0.868279 0.434139 0.900846i $$-0.357053\pi$$
0.434139 + 0.900846i $$0.357053\pi$$
$$462$$ 0 0
$$463$$ 732.679 1.58246 0.791230 0.611518i $$-0.209441\pi$$
0.791230 + 0.611518i $$0.209441\pi$$
$$464$$ 0 0
$$465$$ −513.811 + 167.269i −1.10497 + 0.359719i
$$466$$ 0 0
$$467$$ −592.126 −1.26794 −0.633968 0.773360i $$-0.718575\pi$$
−0.633968 + 0.773360i $$0.718575\pi$$
$$468$$ 0 0
$$469$$ −0.932947 −0.00198923
$$470$$ 0 0
$$471$$ 899.639i 1.91006i
$$472$$ 0 0
$$473$$ 61.0082i 0.128981i
$$474$$ 0 0
$$475$$ 285.519 + 392.047i 0.601092 + 0.825362i
$$476$$ 0 0
$$477$$ 1513.20i 3.17232i
$$478$$ 0 0
$$479$$ 309.151i 0.645409i 0.946500 + 0.322705i $$0.104592\pi$$
−0.946500 + 0.322705i $$0.895408\pi$$
$$480$$ 0 0
$$481$$ −211.873 −0.440485
$$482$$ 0 0
$$483$$ −29.8259 −0.0617513
$$484$$ 0 0
$$485$$ −57.7940 + 18.8146i −0.119163 + 0.0387931i
$$486$$ 0 0
$$487$$ −570.769 −1.17201 −0.586005 0.810307i $$-0.699300\pi$$
−0.586005 + 0.810307i $$0.699300\pi$$
$$488$$ 0 0
$$489$$ 1460.64 2.98699
$$490$$ 0 0
$$491$$ 301.659i 0.614378i 0.951649 + 0.307189i $$0.0993883\pi$$
−0.951649 + 0.307189i $$0.900612\pi$$
$$492$$ 0 0
$$493$$ 808.004i 1.63895i
$$494$$ 0 0
$$495$$ −1364.68 + 444.267i −2.75693 + 0.897509i
$$496$$ 0 0
$$497$$ 8.60653i 0.0173170i
$$498$$ 0 0
$$499$$ 517.758i 1.03759i 0.854898 + 0.518795i $$0.173619\pi$$
−0.854898 + 0.518795i $$0.826381\pi$$
$$500$$ 0 0
$$501$$ −702.439 −1.40207
$$502$$ 0 0
$$503$$ −406.671 −0.808491 −0.404246 0.914650i $$-0.632466\pi$$
−0.404246 + 0.914650i $$0.632466\pi$$
$$504$$ 0 0
$$505$$ −197.688 607.249i −0.391461 1.20247i
$$506$$ 0 0
$$507$$ −170.261 −0.335821
$$508$$ 0 0
$$509$$ −627.097 −1.23202 −0.616009 0.787739i $$-0.711252\pi$$
−0.616009 + 0.787739i $$0.711252\pi$$
$$510$$ 0 0
$$511$$ 8.59372i 0.0168175i
$$512$$ 0 0
$$513$$ 1040.26i 2.02780i
$$514$$ 0 0
$$515$$ 7.39182 + 22.7059i 0.0143530 + 0.0440891i
$$516$$ 0 0
$$517$$ 80.7330i 0.156157i
$$518$$ 0 0
$$519$$ 1445.45i 2.78507i
$$520$$ 0 0
$$521$$ −111.743 −0.214478 −0.107239 0.994233i $$-0.534201\pi$$
−0.107239 + 0.994233i $$0.534201\pi$$
$$522$$ 0 0
$$523$$ −769.813 −1.47192 −0.735959 0.677027i $$-0.763268\pi$$
−0.735959 + 0.677027i $$0.763268\pi$$
$$524$$ 0 0
$$525$$ −22.1399 + 16.1240i −0.0421713 + 0.0307124i
$$526$$ 0 0
$$527$$ 370.776 0.703560
$$528$$ 0 0
$$529$$ 212.160 0.401058
$$530$$ 0 0
$$531$$ 1594.04i 3.00195i
$$532$$ 0 0
$$533$$ 377.958i 0.709115i
$$534$$ 0 0
$$535$$ −165.943 509.736i −0.310174 0.952778i
$$536$$ 0 0
$$537$$ 835.214i 1.55533i
$$538$$ 0 0
$$539$$ 735.222i 1.36405i
$$540$$ 0 0
$$541$$ 225.558 0.416927 0.208463 0.978030i $$-0.433154\pi$$
0.208463 + 0.978030i $$0.433154\pi$$
$$542$$ 0 0
$$543$$ −1776.57 −3.27177
$$544$$ 0 0
$$545$$ −83.0678 255.164i −0.152418 0.468191i
$$546$$ 0 0
$$547$$ −882.346 −1.61306 −0.806532 0.591190i $$-0.798658\pi$$
−0.806532 + 0.591190i $$0.798658\pi$$
$$548$$ 0 0
$$549$$ 702.382 1.27938
$$550$$ 0 0
$$551$$ 861.694i 1.56387i
$$552$$ 0 0
$$553$$ 3.21245i 0.00580913i
$$554$$ 0 0
$$555$$ −456.504 + 148.613i −0.822529 + 0.267772i
$$556$$ 0 0
$$557$$ 303.119i 0.544199i 0.962269 + 0.272100i $$0.0877180\pi$$
−0.962269 + 0.272100i $$0.912282\pi$$
$$558$$ 0 0
$$559$$ 47.5303i 0.0850273i
$$560$$ 0 0
$$561$$ 1448.49 2.58198
$$562$$ 0 0
$$563$$ 344.003 0.611017 0.305508 0.952189i $$-0.401174\pi$$
0.305508 + 0.952189i $$0.401174\pi$$
$$564$$ 0 0
$$565$$ 97.4950 31.7392i 0.172558 0.0561756i
$$566$$ 0 0
$$567$$ −23.2029 −0.0409223
$$568$$ 0 0
$$569$$ −228.925 −0.402329 −0.201165 0.979557i $$-0.564473\pi$$
−0.201165 + 0.979557i $$0.564473\pi$$
$$570$$ 0 0
$$571$$ 371.169i 0.650033i −0.945708 0.325017i $$-0.894630\pi$$
0.945708 0.325017i $$-0.105370\pi$$
$$572$$ 0 0
$$573$$ 1583.10i 2.76283i
$$574$$ 0 0
$$575$$ 550.168 400.674i 0.956814 0.696825i
$$576$$ 0 0
$$577$$ 580.289i 1.00570i 0.864374 + 0.502850i $$0.167715\pi$$
−0.864374 + 0.502850i $$0.832285\pi$$
$$578$$ 0 0
$$579$$ 1017.57i 1.75746i
$$580$$ 0 0
$$581$$ −10.5350 −0.0181325
$$582$$ 0 0
$$583$$ 1188.95 2.03936
$$584$$ 0 0
$$585$$ 1063.19 346.120i 1.81743 0.591657i
$$586$$ 0 0
$$587$$ −65.0801 −0.110869 −0.0554345 0.998462i $$-0.517654\pi$$
−0.0554345 + 0.998462i $$0.517654\pi$$
$$588$$ 0 0
$$589$$ −395.413 −0.671329
$$590$$ 0 0
$$591$$ 314.140i 0.531539i
$$592$$ 0 0
$$593$$ 1002.90i 1.69124i −0.533787 0.845619i $$-0.679232\pi$$
0.533787 0.845619i $$-0.320768\pi$$
$$594$$ 0 0
$$595$$ 17.8705 5.81770i 0.0300345 0.00977764i
$$596$$ 0 0
$$597$$ 1638.91i 2.74524i
$$598$$ 0 0
$$599$$ 888.567i 1.48342i −0.670722 0.741709i $$-0.734016\pi$$
0.670722 0.741709i $$-0.265984\pi$$
$$600$$ 0 0
$$601$$ 132.065 0.219742 0.109871 0.993946i $$-0.464956\pi$$
0.109871 + 0.993946i $$0.464956\pi$$
$$602$$ 0 0
$$603$$ 86.2995 0.143117
$$604$$ 0 0
$$605$$ −161.788 496.973i −0.267418 0.821443i
$$606$$ 0 0
$$607$$ 700.090 1.15336 0.576680 0.816970i $$-0.304348\pi$$
0.576680 + 0.816970i $$0.304348\pi$$
$$608$$ 0 0
$$609$$ −48.6621 −0.0799050
$$610$$ 0 0
$$611$$ 62.8975i 0.102942i
$$612$$ 0 0
$$613$$ 727.420i 1.18666i 0.804961 + 0.593328i $$0.202186\pi$$
−0.804961 + 0.593328i $$0.797814\pi$$
$$614$$ 0 0
$$615$$ 265.109 + 814.351i 0.431072 + 1.32415i
$$616$$ 0 0
$$617$$ 99.7137i 0.161611i −0.996730 0.0808053i $$-0.974251\pi$$
0.996730 0.0808053i $$-0.0257492\pi$$
$$618$$ 0 0
$$619$$ 721.349i 1.16535i 0.812707 + 0.582673i $$0.197993\pi$$
−0.812707 + 0.582673i $$0.802007\pi$$
$$620$$ 0 0
$$621$$ 1459.82 2.35075
$$622$$ 0 0
$$623$$ −2.24983 −0.00361129
$$624$$ 0 0
$$625$$ 191.787 594.847i 0.306859 0.951755i
$$626$$ 0 0
$$627$$ −1544.74 −2.46370
$$628$$ 0 0
$$629$$ 329.422 0.523723
$$630$$ 0 0
$$631$$ 796.856i 1.26285i 0.775438 + 0.631423i $$0.217529\pi$$
−0.775438 + 0.631423i $$0.782471\pi$$
$$632$$ 0 0
$$633$$ 1090.62i 1.72295i
$$634$$ 0 0
$$635$$ −214.332 658.375i −0.337530 1.03681i
$$636$$ 0 0
$$637$$ 572.797i 0.899211i
$$638$$ 0 0
$$639$$ 796.121i 1.24589i
$$640$$ 0 0
$$641$$ 205.013 0.319833 0.159917 0.987131i $$-0.448877\pi$$
0.159917 + 0.987131i $$0.448877\pi$$
$$642$$ 0 0
$$643$$ 495.044 0.769897 0.384949 0.922938i $$-0.374219\pi$$
0.384949 + 0.922938i $$0.374219\pi$$
$$644$$ 0 0
$$645$$ −33.3389 102.409i −0.0516882 0.158774i
$$646$$ 0 0
$$647$$ −1121.84 −1.73391 −0.866953 0.498389i $$-0.833925\pi$$
−0.866953 + 0.498389i $$0.833925\pi$$
$$648$$ 0 0
$$649$$ −1252.47 −1.92984
$$650$$ 0 0
$$651$$ 22.3300i 0.0343011i
$$652$$ 0 0
$$653$$ 622.987i 0.954038i 0.878893 + 0.477019i $$0.158283\pi$$
−0.878893 + 0.477019i $$0.841717\pi$$
$$654$$ 0 0
$$655$$ −1041.71 + 339.127i −1.59040 + 0.517751i
$$656$$ 0 0
$$657$$ 794.936i 1.20995i
$$658$$ 0 0
$$659$$ 264.030i 0.400653i −0.979729 0.200326i $$-0.935800\pi$$
0.979729 0.200326i $$-0.0642002\pi$$
$$660$$ 0 0
$$661$$ −1285.15 −1.94425 −0.972124 0.234469i $$-0.924665\pi$$
−0.972124 + 0.234469i $$0.924665\pi$$
$$662$$ 0 0
$$663$$ −1128.49 −1.70210
$$664$$ 0 0
$$665$$ −19.0580 + 6.20427i −0.0286586 + 0.00932972i
$$666$$ 0 0
$$667$$ 1209.23 1.81294
$$668$$ 0 0
$$669$$ 1212.73 1.81276
$$670$$ 0 0
$$671$$ 551.876i 0.822468i
$$672$$ 0 0
$$673$$ 1244.16i 1.84868i 0.381565 + 0.924342i $$0.375385\pi$$
−0.381565 + 0.924342i $$0.624615\pi$$
$$674$$ 0 0
$$675$$ 1083.63 789.185i 1.60538 1.16916i
$$676$$ 0 0
$$677$$ 963.335i 1.42295i −0.702713 0.711473i $$-0.748028\pi$$
0.702713 0.711473i $$-0.251972\pi$$
$$678$$ 0 0
$$679$$ 2.51170i 0.00369912i
$$680$$ 0 0
$$681$$ −1497.35 −2.19876
$$682$$ 0 0
$$683$$ −770.819 −1.12858 −0.564289 0.825577i $$-0.690850\pi$$
−0.564289 + 0.825577i $$0.690850\pi$$
$$684$$ 0 0
$$685$$ −284.228 + 92.5296i −0.414932 + 0.135080i
$$686$$ 0 0
$$687$$ 261.146 0.380125
$$688$$ 0 0
$$689$$ −926.287 −1.34439
$$690$$ 0 0
$$691$$ 408.765i 0.591555i −0.955257 0.295778i $$-0.904421\pi$$
0.955257 0.295778i $$-0.0955788\pi$$
$$692$$ 0 0
$$693$$ 59.3084i 0.0855821i
$$694$$ 0 0
$$695$$ 126.716 41.2520i 0.182325 0.0593554i
$$696$$ 0 0
$$697$$ 587.652i 0.843116i
$$698$$ 0 0
$$699$$ 658.921i 0.942663i
$$700$$ 0 0
$$701$$ −1335.62 −1.90530 −0.952650 0.304068i $$-0.901655\pi$$
−0.952650 + 0.304068i $$0.901655\pi$$
$$702$$ 0 0
$$703$$ −351.311 −0.499731
$$704$$ 0 0
$$705$$ −44.1178 135.519i −0.0625785 0.192226i
$$706$$ 0 0
$$707$$ 26.3908 0.0373279
$$708$$ 0 0
$$709$$ −362.956 −0.511927 −0.255964 0.966686i $$-0.582393\pi$$
−0.255964 + 0.966686i $$0.582393\pi$$
$$710$$ 0 0
$$711$$ 297.158i 0.417943i
$$712$$ 0 0
$$713$$ 554.891i 0.778249i
$$714$$ 0 0
$$715$$ 271.953 + 835.374i 0.380354 + 1.16836i
$$716$$ 0 0
$$717$$ 426.575i 0.594945i
$$718$$ 0 0
$$719$$ 648.098i 0.901388i −0.892679 0.450694i $$-0.851177\pi$$
0.892679 0.450694i $$-0.148823\pi$$
$$720$$ 0 0
$$721$$ −0.986788 −0.00136864
$$722$$ 0 0
$$723$$ 6.41453 0.00887211
$$724$$ 0 0
$$725$$ 897.622 653.717i 1.23810 0.901679i
$$726$$ 0 0
$$727$$ 431.123 0.593017 0.296508 0.955030i $$-0.404178\pi$$
0.296508 + 0.955030i $$0.404178\pi$$
$$728$$ 0 0
$$729$$ −412.506 −0.565852
$$730$$ 0 0
$$731$$ 73.9003i 0.101095i
$$732$$ 0 0
$$733$$ 1464.87i 1.99846i −0.0392126 0.999231i $$-0.512485\pi$$
0.0392126 0.999231i $$-0.487515\pi$$
$$734$$ 0 0
$$735$$ 401.774 + 1234.15i 0.546632 + 1.67912i
$$736$$ 0 0
$$737$$ 67.8073i 0.0920044i
$$738$$ 0 0
$$739$$ 99.1951i 0.134229i −0.997745 0.0671144i $$-0.978621\pi$$
0.997745 0.0671144i $$-0.0213793\pi$$
$$740$$ 0 0
$$741$$ 1203.48 1.62412
$$742$$ 0 0
$$743$$ 602.719 0.811196 0.405598 0.914052i $$-0.367063\pi$$
0.405598 + 0.914052i $$0.367063\pi$$
$$744$$ 0 0
$$745$$ −222.049 682.081i −0.298053 0.915545i
$$746$$ 0 0
$$747$$ 974.508 1.30456
$$748$$ 0 0
$$749$$ 22.1529 0.0295767
$$750$$ 0 0
$$751$$ 541.472i 0.721001i −0.932759 0.360501i $$-0.882606\pi$$
0.932759 0.360501i $$-0.117394\pi$$
$$752$$ 0 0
$$753$$ 1123.28i 1.49174i
$$754$$ 0 0
$$755$$ 396.963 129.230i 0.525779 0.171166i
$$756$$ 0 0
$$757$$ 1092.79i 1.44358i 0.692113 + 0.721789i $$0.256680\pi$$
−0.692113 + 0.721789i $$0.743320\pi$$
$$758$$ 0 0
$$759$$ 2167.76i 2.85608i
$$760$$ 0 0
$$761$$ −18.7706 −0.0246657 −0.0123328 0.999924i $$-0.503926\pi$$
−0.0123328 + 0.999924i $$0.503926\pi$$
$$762$$ 0 0
$$763$$ 11.0893 0.0145338
$$764$$ 0 0
$$765$$ −1653.06 + 538.149i −2.16086 + 0.703462i
$$766$$ 0 0
$$767$$ 975.773 1.27219
$$768$$ 0 0
$$769$$ 39.0830 0.0508231 0.0254116 0.999677i $$-0.491910\pi$$
0.0254116 + 0.999677i $$0.491910\pi$$
$$770$$ 0 0
$$771$$ 968.423i 1.25606i
$$772$$ 0 0
$$773$$ 31.2171i 0.0403843i −0.999796 0.0201922i $$-0.993572\pi$$
0.999796 0.0201922i $$-0.00642780\pi$$
$$774$$ 0 0
$$775$$ 299.977 + 411.900i 0.387067 + 0.531484i
$$776$$ 0 0
$$777$$ 19.8395i 0.0255334i
$$778$$ 0 0
$$779$$ 626.699i 0.804492i
$$780$$ 0 0
$$781$$ 625.529 0.800933
$$782$$ 0 0
$$783$$ 2381.75 3.04183
$$784$$ 0 0
$$785$$ −806.695 + 262.617i −1.02764 + 0.334544i
$$786$$ 0 0
$$787$$ 988.563 1.25612 0.628058 0.778167i $$-0.283850\pi$$
0.628058 + 0.778167i $$0.283850\pi$$
$$788$$ 0 0
$$789$$ −395.880 −0.501750
$$790$$ 0 0
$$791$$ 4.23710i 0.00535663i
$$792$$ 0 0
$$793$$ 429.956i 0.542189i
$$794$$ 0 0
$$795$$ −1995.78 + 649.721i −2.51042 + 0.817259i
$$796$$ 0 0
$$797$$ 118.920i 0.149210i −0.997213 0.0746048i $$-0.976230\pi$$
0.997213 0.0746048i $$-0.0237695\pi$$
$$798$$ 0 0
$$799$$