Defining parameters
Level: | \( N \) | = | \( 320 = 2^{6} \cdot 5 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 14 \) | ||
Newform subspaces: | \( 41 \) | ||
Sturm bound: | \(18432\) | ||
Trace bound: | \(12\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(320))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6432 | 3234 | 3198 |
Cusp forms | 5856 | 3102 | 2754 |
Eisenstein series | 576 | 132 | 444 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(320))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(320))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(320)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 2}\)