Properties

Label 320.2.s.b.303.2
Level $320$
Weight $2$
Character 320.303
Analytic conductor $2.555$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 320.s (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.55521286468\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.2
Root \(1.41303 - 0.0578659i\) of defining polynomial
Character \(\chi\) \(=\) 320.303
Dual form 320.2.s.b.207.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.96251 q^{3} +(-1.42182 + 1.72581i) q^{5} +(1.60205 - 1.60205i) q^{7} +0.851447 q^{9} +O(q^{10})\) \(q-1.96251 q^{3} +(-1.42182 + 1.72581i) q^{5} +(1.60205 - 1.60205i) q^{7} +0.851447 q^{9} +(-0.754587 - 0.754587i) q^{11} -5.94580i q^{13} +(2.79034 - 3.38692i) q^{15} +(1.95574 - 1.95574i) q^{17} +(-0.780680 - 0.780680i) q^{19} +(-3.14404 + 3.14404i) q^{21} +(-4.93121 - 4.93121i) q^{23} +(-0.956833 - 4.90759i) q^{25} +4.21656 q^{27} +(-1.44802 + 1.44802i) q^{29} -3.60859i q^{31} +(1.48089 + 1.48089i) q^{33} +(0.486998 + 5.04266i) q^{35} -10.2364i q^{37} +11.6687i q^{39} +6.93334i q^{41} +9.91344i q^{43} +(-1.21061 + 1.46944i) q^{45} +(-0.104270 - 0.104270i) q^{47} +1.86688i q^{49} +(-3.83816 + 3.83816i) q^{51} -4.03213 q^{53} +(2.37516 - 0.229383i) q^{55} +(1.53209 + 1.53209i) q^{57} +(3.46736 - 3.46736i) q^{59} +(0.680578 + 0.680578i) q^{61} +(1.36406 - 1.36406i) q^{63} +(10.2613 + 8.45388i) q^{65} -9.04721i q^{67} +(9.67754 + 9.67754i) q^{69} +3.64007 q^{71} +(-2.94030 + 2.94030i) q^{73} +(1.87779 + 9.63120i) q^{75} -2.41777 q^{77} -10.7140 q^{79} -10.8294 q^{81} +4.23845 q^{83} +(0.594515 + 6.15595i) q^{85} +(2.84176 - 2.84176i) q^{87} +0.0426256 q^{89} +(-9.52546 - 9.52546i) q^{91} +7.08189i q^{93} +(2.45730 - 0.237315i) q^{95} +(-1.91173 + 1.91173i) q^{97} +(-0.642491 - 0.642491i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + O(q^{10}) \) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + 2q^{11} + 20q^{15} - 6q^{17} + 2q^{19} - 16q^{21} + 2q^{23} - 6q^{25} + 24q^{27} + 14q^{29} - 8q^{33} - 2q^{35} - 14q^{45} - 38q^{47} - 8q^{51} + 12q^{53} + 6q^{55} - 24q^{57} - 10q^{59} + 14q^{61} + 6q^{63} - 32q^{69} - 24q^{71} - 14q^{73} - 16q^{75} - 44q^{77} + 16q^{79} + 2q^{81} - 40q^{83} + 14q^{85} - 24q^{87} + 12q^{89} - 34q^{95} + 18q^{97} - 22q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.96251 −1.13306 −0.566528 0.824043i \(-0.691714\pi\)
−0.566528 + 0.824043i \(0.691714\pi\)
\(4\) 0 0
\(5\) −1.42182 + 1.72581i −0.635859 + 0.771805i
\(6\) 0 0
\(7\) 1.60205 1.60205i 0.605517 0.605517i −0.336254 0.941771i \(-0.609160\pi\)
0.941771 + 0.336254i \(0.109160\pi\)
\(8\) 0 0
\(9\) 0.851447 0.283816
\(10\) 0 0
\(11\) −0.754587 0.754587i −0.227517 0.227517i 0.584138 0.811654i \(-0.301433\pi\)
−0.811654 + 0.584138i \(0.801433\pi\)
\(12\) 0 0
\(13\) 5.94580i 1.64907i −0.565812 0.824534i \(-0.691437\pi\)
0.565812 0.824534i \(-0.308563\pi\)
\(14\) 0 0
\(15\) 2.79034 3.38692i 0.720464 0.874498i
\(16\) 0 0
\(17\) 1.95574 1.95574i 0.474336 0.474336i −0.428978 0.903315i \(-0.641126\pi\)
0.903315 + 0.428978i \(0.141126\pi\)
\(18\) 0 0
\(19\) −0.780680 0.780680i −0.179100 0.179100i 0.611863 0.790964i \(-0.290420\pi\)
−0.790964 + 0.611863i \(0.790420\pi\)
\(20\) 0 0
\(21\) −3.14404 + 3.14404i −0.686085 + 0.686085i
\(22\) 0 0
\(23\) −4.93121 4.93121i −1.02823 1.02823i −0.999590 0.0286378i \(-0.990883\pi\)
−0.0286378 0.999590i \(-0.509117\pi\)
\(24\) 0 0
\(25\) −0.956833 4.90759i −0.191367 0.981519i
\(26\) 0 0
\(27\) 4.21656 0.811477
\(28\) 0 0
\(29\) −1.44802 + 1.44802i −0.268891 + 0.268891i −0.828653 0.559762i \(-0.810892\pi\)
0.559762 + 0.828653i \(0.310892\pi\)
\(30\) 0 0
\(31\) 3.60859i 0.648121i −0.946036 0.324061i \(-0.894952\pi\)
0.946036 0.324061i \(-0.105048\pi\)
\(32\) 0 0
\(33\) 1.48089 + 1.48089i 0.257789 + 0.257789i
\(34\) 0 0
\(35\) 0.486998 + 5.04266i 0.0823177 + 0.852365i
\(36\) 0 0
\(37\) 10.2364i 1.68285i −0.540371 0.841427i \(-0.681716\pi\)
0.540371 0.841427i \(-0.318284\pi\)
\(38\) 0 0
\(39\) 11.6687i 1.86849i
\(40\) 0 0
\(41\) 6.93334i 1.08281i 0.840763 + 0.541403i \(0.182107\pi\)
−0.840763 + 0.541403i \(0.817893\pi\)
\(42\) 0 0
\(43\) 9.91344i 1.51179i 0.654695 + 0.755893i \(0.272797\pi\)
−0.654695 + 0.755893i \(0.727203\pi\)
\(44\) 0 0
\(45\) −1.21061 + 1.46944i −0.180467 + 0.219050i
\(46\) 0 0
\(47\) −0.104270 0.104270i −0.0152093 0.0152093i 0.699461 0.714671i \(-0.253423\pi\)
−0.714671 + 0.699461i \(0.753423\pi\)
\(48\) 0 0
\(49\) 1.86688i 0.266698i
\(50\) 0 0
\(51\) −3.83816 + 3.83816i −0.537450 + 0.537450i
\(52\) 0 0
\(53\) −4.03213 −0.553856 −0.276928 0.960891i \(-0.589316\pi\)
−0.276928 + 0.960891i \(0.589316\pi\)
\(54\) 0 0
\(55\) 2.37516 0.229383i 0.320267 0.0309300i
\(56\) 0 0
\(57\) 1.53209 + 1.53209i 0.202931 + 0.202931i
\(58\) 0 0
\(59\) 3.46736 3.46736i 0.451412 0.451412i −0.444411 0.895823i \(-0.646587\pi\)
0.895823 + 0.444411i \(0.146587\pi\)
\(60\) 0 0
\(61\) 0.680578 + 0.680578i 0.0871391 + 0.0871391i 0.749333 0.662194i \(-0.230374\pi\)
−0.662194 + 0.749333i \(0.730374\pi\)
\(62\) 0 0
\(63\) 1.36406 1.36406i 0.171855 0.171855i
\(64\) 0 0
\(65\) 10.2613 + 8.45388i 1.27276 + 1.04857i
\(66\) 0 0
\(67\) 9.04721i 1.10529i −0.833416 0.552646i \(-0.813618\pi\)
0.833416 0.552646i \(-0.186382\pi\)
\(68\) 0 0
\(69\) 9.67754 + 9.67754i 1.16504 + 1.16504i
\(70\) 0 0
\(71\) 3.64007 0.431997 0.215998 0.976394i \(-0.430699\pi\)
0.215998 + 0.976394i \(0.430699\pi\)
\(72\) 0 0
\(73\) −2.94030 + 2.94030i −0.344136 + 0.344136i −0.857920 0.513784i \(-0.828243\pi\)
0.513784 + 0.857920i \(0.328243\pi\)
\(74\) 0 0
\(75\) 1.87779 + 9.63120i 0.216829 + 1.11212i
\(76\) 0 0
\(77\) −2.41777 −0.275530
\(78\) 0 0
\(79\) −10.7140 −1.20542 −0.602711 0.797960i \(-0.705913\pi\)
−0.602711 + 0.797960i \(0.705913\pi\)
\(80\) 0 0
\(81\) −10.8294 −1.20326
\(82\) 0 0
\(83\) 4.23845 0.465230 0.232615 0.972569i \(-0.425272\pi\)
0.232615 + 0.972569i \(0.425272\pi\)
\(84\) 0 0
\(85\) 0.594515 + 6.15595i 0.0644842 + 0.667707i
\(86\) 0 0
\(87\) 2.84176 2.84176i 0.304668 0.304668i
\(88\) 0 0
\(89\) 0.0426256 0.00451831 0.00225915 0.999997i \(-0.499281\pi\)
0.00225915 + 0.999997i \(0.499281\pi\)
\(90\) 0 0
\(91\) −9.52546 9.52546i −0.998539 0.998539i
\(92\) 0 0
\(93\) 7.08189i 0.734358i
\(94\) 0 0
\(95\) 2.45730 0.237315i 0.252113 0.0243480i
\(96\) 0 0
\(97\) −1.91173 + 1.91173i −0.194106 + 0.194106i −0.797468 0.603362i \(-0.793828\pi\)
0.603362 + 0.797468i \(0.293828\pi\)
\(98\) 0 0
\(99\) −0.642491 0.642491i −0.0645728 0.0645728i
\(100\) 0 0
\(101\) 4.96537 4.96537i 0.494073 0.494073i −0.415514 0.909587i \(-0.636398\pi\)
0.909587 + 0.415514i \(0.136398\pi\)
\(102\) 0 0
\(103\) −0.442220 0.442220i −0.0435733 0.0435733i 0.684984 0.728558i \(-0.259809\pi\)
−0.728558 + 0.684984i \(0.759809\pi\)
\(104\) 0 0
\(105\) −0.955739 9.89627i −0.0932706 0.965777i
\(106\) 0 0
\(107\) −17.5924 −1.70072 −0.850359 0.526204i \(-0.823615\pi\)
−0.850359 + 0.526204i \(0.823615\pi\)
\(108\) 0 0
\(109\) 0.345161 0.345161i 0.0330605 0.0330605i −0.690383 0.723444i \(-0.742558\pi\)
0.723444 + 0.690383i \(0.242558\pi\)
\(110\) 0 0
\(111\) 20.0890i 1.90677i
\(112\) 0 0
\(113\) −5.43662 5.43662i −0.511435 0.511435i 0.403531 0.914966i \(-0.367783\pi\)
−0.914966 + 0.403531i \(0.867783\pi\)
\(114\) 0 0
\(115\) 15.5216 1.49901i 1.44740 0.139784i
\(116\) 0 0
\(117\) 5.06253i 0.468031i
\(118\) 0 0
\(119\) 6.26638i 0.574438i
\(120\) 0 0
\(121\) 9.86120i 0.896472i
\(122\) 0 0
\(123\) 13.6067i 1.22688i
\(124\) 0 0
\(125\) 9.83002 + 5.32642i 0.879223 + 0.476410i
\(126\) 0 0
\(127\) 6.27150 + 6.27150i 0.556505 + 0.556505i 0.928311 0.371805i \(-0.121261\pi\)
−0.371805 + 0.928311i \(0.621261\pi\)
\(128\) 0 0
\(129\) 19.4552i 1.71294i
\(130\) 0 0
\(131\) −1.61521 + 1.61521i −0.141122 + 0.141122i −0.774138 0.633017i \(-0.781816\pi\)
0.633017 + 0.774138i \(0.281816\pi\)
\(132\) 0 0
\(133\) −2.50138 −0.216897
\(134\) 0 0
\(135\) −5.99520 + 7.27697i −0.515985 + 0.626302i
\(136\) 0 0
\(137\) 6.83585 + 6.83585i 0.584026 + 0.584026i 0.936007 0.351981i \(-0.114492\pi\)
−0.351981 + 0.936007i \(0.614492\pi\)
\(138\) 0 0
\(139\) 13.7427 13.7427i 1.16564 1.16564i 0.182423 0.983220i \(-0.441606\pi\)
0.983220 0.182423i \(-0.0583940\pi\)
\(140\) 0 0
\(141\) 0.204631 + 0.204631i 0.0172330 + 0.0172330i
\(142\) 0 0
\(143\) −4.48662 + 4.48662i −0.375190 + 0.375190i
\(144\) 0 0
\(145\) −0.440176 4.55784i −0.0365547 0.378508i
\(146\) 0 0
\(147\) 3.66378i 0.302184i
\(148\) 0 0
\(149\) −1.73811 1.73811i −0.142391 0.142391i 0.632318 0.774709i \(-0.282104\pi\)
−0.774709 + 0.632318i \(0.782104\pi\)
\(150\) 0 0
\(151\) −5.83522 −0.474864 −0.237432 0.971404i \(-0.576306\pi\)
−0.237432 + 0.971404i \(0.576306\pi\)
\(152\) 0 0
\(153\) 1.66521 1.66521i 0.134624 0.134624i
\(154\) 0 0
\(155\) 6.22773 + 5.13078i 0.500223 + 0.412114i
\(156\) 0 0
\(157\) 3.14732 0.251183 0.125592 0.992082i \(-0.459917\pi\)
0.125592 + 0.992082i \(0.459917\pi\)
\(158\) 0 0
\(159\) 7.91310 0.627550
\(160\) 0 0
\(161\) −15.8001 −1.24522
\(162\) 0 0
\(163\) −7.82117 −0.612601 −0.306301 0.951935i \(-0.599091\pi\)
−0.306301 + 0.951935i \(0.599091\pi\)
\(164\) 0 0
\(165\) −4.66128 + 0.450167i −0.362880 + 0.0350454i
\(166\) 0 0
\(167\) 9.88460 9.88460i 0.764893 0.764893i −0.212309 0.977203i \(-0.568098\pi\)
0.977203 + 0.212309i \(0.0680985\pi\)
\(168\) 0 0
\(169\) −22.3525 −1.71942
\(170\) 0 0
\(171\) −0.664708 0.664708i −0.0508315 0.0508315i
\(172\) 0 0
\(173\) 3.49245i 0.265526i 0.991148 + 0.132763i \(0.0423849\pi\)
−0.991148 + 0.132763i \(0.957615\pi\)
\(174\) 0 0
\(175\) −9.39509 6.32931i −0.710202 0.478451i
\(176\) 0 0
\(177\) −6.80473 + 6.80473i −0.511475 + 0.511475i
\(178\) 0 0
\(179\) 13.0809 + 13.0809i 0.977713 + 0.977713i 0.999757 0.0220444i \(-0.00701753\pi\)
−0.0220444 + 0.999757i \(0.507018\pi\)
\(180\) 0 0
\(181\) 13.6393 13.6393i 1.01380 1.01380i 0.0138952 0.999903i \(-0.495577\pi\)
0.999903 0.0138952i \(-0.00442312\pi\)
\(182\) 0 0
\(183\) −1.33564 1.33564i −0.0987335 0.0987335i
\(184\) 0 0
\(185\) 17.6661 + 14.5544i 1.29884 + 1.07006i
\(186\) 0 0
\(187\) −2.95155 −0.215839
\(188\) 0 0
\(189\) 6.75513 6.75513i 0.491363 0.491363i
\(190\) 0 0
\(191\) 2.92523i 0.211662i 0.994384 + 0.105831i \(0.0337503\pi\)
−0.994384 + 0.105831i \(0.966250\pi\)
\(192\) 0 0
\(193\) 0.0830702 + 0.0830702i 0.00597953 + 0.00597953i 0.710090 0.704111i \(-0.248654\pi\)
−0.704111 + 0.710090i \(0.748654\pi\)
\(194\) 0 0
\(195\) −20.1379 16.5908i −1.44211 1.18809i
\(196\) 0 0
\(197\) 7.80487i 0.556074i −0.960570 0.278037i \(-0.910316\pi\)
0.960570 0.278037i \(-0.0896838\pi\)
\(198\) 0 0
\(199\) 10.9740i 0.777924i 0.921254 + 0.388962i \(0.127166\pi\)
−0.921254 + 0.388962i \(0.872834\pi\)
\(200\) 0 0
\(201\) 17.7552i 1.25236i
\(202\) 0 0
\(203\) 4.63960i 0.325636i
\(204\) 0 0
\(205\) −11.9656 9.85799i −0.835715 0.688512i
\(206\) 0 0
\(207\) −4.19866 4.19866i −0.291827 0.291827i
\(208\) 0 0
\(209\) 1.17818i 0.0814966i
\(210\) 0 0
\(211\) 8.92204 8.92204i 0.614218 0.614218i −0.329824 0.944042i \(-0.606989\pi\)
0.944042 + 0.329824i \(0.106989\pi\)
\(212\) 0 0
\(213\) −7.14367 −0.489477
\(214\) 0 0
\(215\) −17.1087 14.0952i −1.16680 0.961283i
\(216\) 0 0
\(217\) −5.78113 5.78113i −0.392449 0.392449i
\(218\) 0 0
\(219\) 5.77037 5.77037i 0.389926 0.389926i
\(220\) 0 0
\(221\) −11.6284 11.6284i −0.782213 0.782213i
\(222\) 0 0
\(223\) 13.1678 13.1678i 0.881784 0.881784i −0.111931 0.993716i \(-0.535704\pi\)
0.993716 + 0.111931i \(0.0357037\pi\)
\(224\) 0 0
\(225\) −0.814693 4.17856i −0.0543129 0.278570i
\(226\) 0 0
\(227\) 19.3432i 1.28385i 0.766766 + 0.641927i \(0.221865\pi\)
−0.766766 + 0.641927i \(0.778135\pi\)
\(228\) 0 0
\(229\) 13.2143 + 13.2143i 0.873223 + 0.873223i 0.992822 0.119599i \(-0.0381610\pi\)
−0.119599 + 0.992822i \(0.538161\pi\)
\(230\) 0 0
\(231\) 4.74490 0.312191
\(232\) 0 0
\(233\) 20.6884 20.6884i 1.35534 1.35534i 0.475769 0.879570i \(-0.342170\pi\)
0.879570 0.475769i \(-0.157830\pi\)
\(234\) 0 0
\(235\) 0.328204 0.0316965i 0.0214096 0.00206765i
\(236\) 0 0
\(237\) 21.0264 1.36581
\(238\) 0 0
\(239\) −14.1053 −0.912395 −0.456198 0.889878i \(-0.650789\pi\)
−0.456198 + 0.889878i \(0.650789\pi\)
\(240\) 0 0
\(241\) 12.8011 0.824592 0.412296 0.911050i \(-0.364727\pi\)
0.412296 + 0.911050i \(0.364727\pi\)
\(242\) 0 0
\(243\) 8.60310 0.551889
\(244\) 0 0
\(245\) −3.22189 2.65438i −0.205839 0.169582i
\(246\) 0 0
\(247\) −4.64177 + 4.64177i −0.295349 + 0.295349i
\(248\) 0 0
\(249\) −8.31800 −0.527132
\(250\) 0 0
\(251\) 6.84118 + 6.84118i 0.431812 + 0.431812i 0.889244 0.457433i \(-0.151231\pi\)
−0.457433 + 0.889244i \(0.651231\pi\)
\(252\) 0 0
\(253\) 7.44205i 0.467878i
\(254\) 0 0
\(255\) −1.16674 12.0811i −0.0730642 0.756549i
\(256\) 0 0
\(257\) −6.66524 + 6.66524i −0.415766 + 0.415766i −0.883742 0.467975i \(-0.844984\pi\)
0.467975 + 0.883742i \(0.344984\pi\)
\(258\) 0 0
\(259\) −16.3992 16.3992i −1.01900 1.01900i
\(260\) 0 0
\(261\) −1.23291 + 1.23291i −0.0763154 + 0.0763154i
\(262\) 0 0
\(263\) 7.32015 + 7.32015i 0.451380 + 0.451380i 0.895812 0.444432i \(-0.146595\pi\)
−0.444432 + 0.895812i \(0.646595\pi\)
\(264\) 0 0
\(265\) 5.73298 6.95869i 0.352174 0.427469i
\(266\) 0 0
\(267\) −0.0836533 −0.00511950
\(268\) 0 0
\(269\) −15.9801 + 15.9801i −0.974321 + 0.974321i −0.999678 0.0253576i \(-0.991928\pi\)
0.0253576 + 0.999678i \(0.491928\pi\)
\(270\) 0 0
\(271\) 3.59684i 0.218492i −0.994015 0.109246i \(-0.965156\pi\)
0.994015 0.109246i \(-0.0348437\pi\)
\(272\) 0 0
\(273\) 18.6938 + 18.6938i 1.13140 + 1.13140i
\(274\) 0 0
\(275\) −2.98119 + 4.42522i −0.179773 + 0.266851i
\(276\) 0 0
\(277\) 20.9416i 1.25826i 0.777300 + 0.629131i \(0.216589\pi\)
−0.777300 + 0.629131i \(0.783411\pi\)
\(278\) 0 0
\(279\) 3.07252i 0.183947i
\(280\) 0 0
\(281\) 3.26699i 0.194892i 0.995241 + 0.0974462i \(0.0310674\pi\)
−0.995241 + 0.0974462i \(0.968933\pi\)
\(282\) 0 0
\(283\) 0 0.000151619i 0 9.01279e-6i −1.00000 4.50640e-6i \(-0.999999\pi\)
1.00000 4.50640e-6i \(-1.43443e-6\pi\)
\(284\) 0 0
\(285\) −4.82247 + 0.465733i −0.285658 + 0.0275877i
\(286\) 0 0
\(287\) 11.1075 + 11.1075i 0.655657 + 0.655657i
\(288\) 0 0
\(289\) 9.35017i 0.550010i
\(290\) 0 0
\(291\) 3.75178 3.75178i 0.219933 0.219933i
\(292\) 0 0
\(293\) −11.0593 −0.646091 −0.323045 0.946384i \(-0.604707\pi\)
−0.323045 + 0.946384i \(0.604707\pi\)
\(294\) 0 0
\(295\) 1.05402 + 10.9140i 0.0613677 + 0.635436i
\(296\) 0 0
\(297\) −3.18176 3.18176i −0.184624 0.184624i
\(298\) 0 0
\(299\) −29.3200 + 29.3200i −1.69562 + 1.69562i
\(300\) 0 0
\(301\) 15.8818 + 15.8818i 0.915413 + 0.915413i
\(302\) 0 0
\(303\) −9.74459 + 9.74459i −0.559812 + 0.559812i
\(304\) 0 0
\(305\) −2.14221 + 0.206885i −0.122663 + 0.0118462i
\(306\) 0 0
\(307\) 15.1317i 0.863613i 0.901966 + 0.431806i \(0.142124\pi\)
−0.901966 + 0.431806i \(0.857876\pi\)
\(308\) 0 0
\(309\) 0.867862 + 0.867862i 0.0493709 + 0.0493709i
\(310\) 0 0
\(311\) 27.1556 1.53985 0.769925 0.638134i \(-0.220293\pi\)
0.769925 + 0.638134i \(0.220293\pi\)
\(312\) 0 0
\(313\) −13.6695 + 13.6695i −0.772646 + 0.772646i −0.978568 0.205922i \(-0.933981\pi\)
0.205922 + 0.978568i \(0.433981\pi\)
\(314\) 0 0
\(315\) 0.414653 + 4.29356i 0.0233631 + 0.241915i
\(316\) 0 0
\(317\) −25.8314 −1.45084 −0.725419 0.688307i \(-0.758354\pi\)
−0.725419 + 0.688307i \(0.758354\pi\)
\(318\) 0 0
\(319\) 2.18532 0.122354
\(320\) 0 0
\(321\) 34.5252 1.92701
\(322\) 0 0
\(323\) −3.05361 −0.169908
\(324\) 0 0
\(325\) −29.1796 + 5.68914i −1.61859 + 0.315576i
\(326\) 0 0
\(327\) −0.677383 + 0.677383i −0.0374594 + 0.0374594i
\(328\) 0 0
\(329\) −0.334091 −0.0184190
\(330\) 0 0
\(331\) 13.6207 + 13.6207i 0.748659 + 0.748659i 0.974227 0.225568i \(-0.0724239\pi\)
−0.225568 + 0.974227i \(0.572424\pi\)
\(332\) 0 0
\(333\) 8.71576i 0.477621i
\(334\) 0 0
\(335\) 15.6138 + 12.8635i 0.853071 + 0.702810i
\(336\) 0 0
\(337\) 16.0911 16.0911i 0.876536 0.876536i −0.116638 0.993174i \(-0.537212\pi\)
0.993174 + 0.116638i \(0.0372119\pi\)
\(338\) 0 0
\(339\) 10.6694 + 10.6694i 0.579484 + 0.579484i
\(340\) 0 0
\(341\) −2.72299 + 2.72299i −0.147458 + 0.147458i
\(342\) 0 0
\(343\) 14.2052 + 14.2052i 0.767007 + 0.767007i
\(344\) 0 0
\(345\) −30.4614 + 2.94183i −1.63998 + 0.158383i
\(346\) 0 0
\(347\) −5.57562 −0.299315 −0.149658 0.988738i \(-0.547817\pi\)
−0.149658 + 0.988738i \(0.547817\pi\)
\(348\) 0 0
\(349\) 15.0811 15.0811i 0.807273 0.807273i −0.176947 0.984220i \(-0.556622\pi\)
0.984220 + 0.176947i \(0.0566222\pi\)
\(350\) 0 0
\(351\) 25.0708i 1.33818i
\(352\) 0 0
\(353\) 2.57880 + 2.57880i 0.137256 + 0.137256i 0.772397 0.635141i \(-0.219058\pi\)
−0.635141 + 0.772397i \(0.719058\pi\)
\(354\) 0 0
\(355\) −5.17554 + 6.28206i −0.274689 + 0.333417i
\(356\) 0 0
\(357\) 12.2978i 0.650870i
\(358\) 0 0
\(359\) 5.77227i 0.304649i −0.988331 0.152324i \(-0.951324\pi\)
0.988331 0.152324i \(-0.0486758\pi\)
\(360\) 0 0
\(361\) 17.7811i 0.935846i
\(362\) 0 0
\(363\) 19.3527i 1.01575i
\(364\) 0 0
\(365\) −0.893807 9.25499i −0.0467840 0.484428i
\(366\) 0 0
\(367\) −8.30496 8.30496i −0.433516 0.433516i 0.456307 0.889822i \(-0.349172\pi\)
−0.889822 + 0.456307i \(0.849172\pi\)
\(368\) 0 0
\(369\) 5.90337i 0.307317i
\(370\) 0 0
\(371\) −6.45967 + 6.45967i −0.335369 + 0.335369i
\(372\) 0 0
\(373\) 16.0484 0.830953 0.415477 0.909604i \(-0.363615\pi\)
0.415477 + 0.909604i \(0.363615\pi\)
\(374\) 0 0
\(375\) −19.2915 10.4532i −0.996209 0.539799i
\(376\) 0 0
\(377\) 8.60964 + 8.60964i 0.443419 + 0.443419i
\(378\) 0 0
\(379\) 8.91367 8.91367i 0.457865 0.457865i −0.440089 0.897954i \(-0.645053\pi\)
0.897954 + 0.440089i \(0.145053\pi\)
\(380\) 0 0
\(381\) −12.3079 12.3079i −0.630552 0.630552i
\(382\) 0 0
\(383\) 24.8928 24.8928i 1.27196 1.27196i 0.326904 0.945057i \(-0.393995\pi\)
0.945057 0.326904i \(-0.106005\pi\)
\(384\) 0 0
\(385\) 3.43764 4.17261i 0.175199 0.212656i
\(386\) 0 0
\(387\) 8.44078i 0.429069i
\(388\) 0 0
\(389\) −16.5819 16.5819i −0.840738 0.840738i 0.148217 0.988955i \(-0.452647\pi\)
−0.988955 + 0.148217i \(0.952647\pi\)
\(390\) 0 0
\(391\) −19.2883 −0.975452
\(392\) 0 0
\(393\) 3.16987 3.16987i 0.159899 0.159899i
\(394\) 0 0
\(395\) 15.2335 18.4904i 0.766478 0.930351i
\(396\) 0 0
\(397\) −8.62531 −0.432892 −0.216446 0.976295i \(-0.569447\pi\)
−0.216446 + 0.976295i \(0.569447\pi\)
\(398\) 0 0
\(399\) 4.90897 0.245756
\(400\) 0 0
\(401\) 19.7107 0.984307 0.492153 0.870508i \(-0.336210\pi\)
0.492153 + 0.870508i \(0.336210\pi\)
\(402\) 0 0
\(403\) −21.4559 −1.06880
\(404\) 0 0
\(405\) 15.3975 18.6894i 0.765107 0.928686i
\(406\) 0 0
\(407\) −7.72426 + 7.72426i −0.382877 + 0.382877i
\(408\) 0 0
\(409\) 26.7930 1.32483 0.662414 0.749138i \(-0.269532\pi\)
0.662414 + 0.749138i \(0.269532\pi\)
\(410\) 0 0
\(411\) −13.4154 13.4154i −0.661734 0.661734i
\(412\) 0 0
\(413\) 11.1098i 0.546675i
\(414\) 0 0
\(415\) −6.02633 + 7.31475i −0.295821 + 0.359067i
\(416\) 0 0
\(417\) −26.9702 + 26.9702i −1.32074 + 1.32074i
\(418\) 0 0
\(419\) −11.0752 11.0752i −0.541061 0.541061i 0.382779 0.923840i \(-0.374967\pi\)
−0.923840 + 0.382779i \(0.874967\pi\)
\(420\) 0 0
\(421\) −0.243092 + 0.243092i −0.0118476 + 0.0118476i −0.713006 0.701158i \(-0.752667\pi\)
0.701158 + 0.713006i \(0.252667\pi\)
\(422\) 0 0
\(423\) −0.0887804 0.0887804i −0.00431665 0.00431665i
\(424\) 0 0
\(425\) −11.4693 7.72666i −0.556342 0.374798i
\(426\) 0 0
\(427\) 2.18064 0.105528
\(428\) 0 0
\(429\) 8.80505 8.80505i 0.425112 0.425112i
\(430\) 0 0
\(431\) 20.7024i 0.997200i −0.866832 0.498600i \(-0.833848\pi\)
0.866832 0.498600i \(-0.166152\pi\)
\(432\) 0 0
\(433\) −5.68221 5.68221i −0.273069 0.273069i 0.557265 0.830335i \(-0.311851\pi\)
−0.830335 + 0.557265i \(0.811851\pi\)
\(434\) 0 0
\(435\) 0.863851 + 8.94480i 0.0414185 + 0.428871i
\(436\) 0 0
\(437\) 7.69939i 0.368312i
\(438\) 0 0
\(439\) 18.7902i 0.896808i −0.893831 0.448404i \(-0.851993\pi\)
0.893831 0.448404i \(-0.148007\pi\)
\(440\) 0 0
\(441\) 1.58955i 0.0756930i
\(442\) 0 0
\(443\) 12.1641i 0.577934i −0.957339 0.288967i \(-0.906688\pi\)
0.957339 0.288967i \(-0.0933119\pi\)
\(444\) 0 0
\(445\) −0.0606062 + 0.0735637i −0.00287301 + 0.00348725i
\(446\) 0 0
\(447\) 3.41105 + 3.41105i 0.161337 + 0.161337i
\(448\) 0 0
\(449\) 27.2708i 1.28699i −0.765452 0.643493i \(-0.777484\pi\)
0.765452 0.643493i \(-0.222516\pi\)
\(450\) 0 0
\(451\) 5.23181 5.23181i 0.246356 0.246356i
\(452\) 0 0
\(453\) 11.4517 0.538047
\(454\) 0 0
\(455\) 29.9826 2.89559i 1.40561 0.135748i
\(456\) 0 0
\(457\) 19.7514 + 19.7514i 0.923933 + 0.923933i 0.997305 0.0733714i \(-0.0233758\pi\)
−0.0733714 + 0.997305i \(0.523376\pi\)
\(458\) 0 0
\(459\) 8.24649 8.24649i 0.384913 0.384913i
\(460\) 0 0
\(461\) 12.9262 + 12.9262i 0.602035 + 0.602035i 0.940852 0.338818i \(-0.110027\pi\)
−0.338818 + 0.940852i \(0.610027\pi\)
\(462\) 0 0
\(463\) −14.5647 + 14.5647i −0.676879 + 0.676879i −0.959293 0.282414i \(-0.908865\pi\)
0.282414 + 0.959293i \(0.408865\pi\)
\(464\) 0 0
\(465\) −12.2220 10.0692i −0.566781 0.466948i
\(466\) 0 0
\(467\) 42.3556i 1.95998i −0.199040 0.979991i \(-0.563782\pi\)
0.199040 0.979991i \(-0.436218\pi\)
\(468\) 0 0
\(469\) −14.4941 14.4941i −0.669274 0.669274i
\(470\) 0 0
\(471\) −6.17665 −0.284605
\(472\) 0 0
\(473\) 7.48056 7.48056i 0.343956 0.343956i
\(474\) 0 0
\(475\) −3.08428 + 4.57824i −0.141517 + 0.210064i
\(476\) 0 0
\(477\) −3.43315 −0.157193
\(478\) 0 0
\(479\) −27.0905 −1.23780 −0.618899 0.785470i \(-0.712421\pi\)
−0.618899 + 0.785470i \(0.712421\pi\)
\(480\) 0 0
\(481\) −60.8636 −2.77514
\(482\) 0 0
\(483\) 31.0078 1.41090
\(484\) 0 0
\(485\) −0.581136 6.01741i −0.0263880 0.273236i
\(486\) 0 0
\(487\) −21.9674 + 21.9674i −0.995436 + 0.995436i −0.999990 0.00455390i \(-0.998550\pi\)
0.00455390 + 0.999990i \(0.498550\pi\)
\(488\) 0 0
\(489\) 15.3491 0.694111
\(490\) 0 0
\(491\) 6.11955 + 6.11955i 0.276171 + 0.276171i 0.831579 0.555407i \(-0.187438\pi\)
−0.555407 + 0.831579i \(0.687438\pi\)
\(492\) 0 0
\(493\) 5.66390i 0.255089i
\(494\) 0 0
\(495\) 2.02233 0.195308i 0.0908968 0.00877842i
\(496\) 0 0
\(497\) 5.83157 5.83157i 0.261581 0.261581i
\(498\) 0 0
\(499\) −15.4115 15.4115i −0.689914 0.689914i 0.272298 0.962213i \(-0.412216\pi\)
−0.962213 + 0.272298i \(0.912216\pi\)
\(500\) 0 0
\(501\) −19.3986 + 19.3986i −0.866667 + 0.866667i
\(502\) 0 0
\(503\) −26.4312 26.4312i −1.17851 1.17851i −0.980124 0.198387i \(-0.936430\pi\)
−0.198387 0.980124i \(-0.563570\pi\)
\(504\) 0 0
\(505\) 1.50940 + 15.6292i 0.0671673 + 0.695488i
\(506\) 0 0
\(507\) 43.8671 1.94820
\(508\) 0 0
\(509\) −0.233714 + 0.233714i −0.0103592 + 0.0103592i −0.712267 0.701908i \(-0.752332\pi\)
0.701908 + 0.712267i \(0.252332\pi\)
\(510\) 0 0
\(511\) 9.42101i 0.416761i
\(512\) 0 0
\(513\) −3.29178 3.29178i −0.145336 0.145336i
\(514\) 0 0
\(515\) 1.39195 0.134428i 0.0613365 0.00592362i
\(516\) 0 0
\(517\) 0.157362i 0.00692075i
\(518\) 0 0
\(519\) 6.85397i 0.300856i
\(520\) 0 0
\(521\) 4.50147i 0.197213i 0.995127 + 0.0986064i \(0.0314385\pi\)
−0.995127 + 0.0986064i \(0.968562\pi\)
\(522\) 0 0
\(523\) 12.6042i 0.551141i 0.961281 + 0.275571i \(0.0888668\pi\)
−0.961281 + 0.275571i \(0.911133\pi\)
\(524\) 0 0
\(525\) 18.4380 + 12.4213i 0.804699 + 0.542111i
\(526\) 0 0
\(527\) −7.05746 7.05746i −0.307428 0.307428i
\(528\) 0 0
\(529\) 25.6336i 1.11450i
\(530\) 0 0
\(531\) 2.95227 2.95227i 0.128118 0.128118i
\(532\) 0 0
\(533\) 41.2242 1.78562
\(534\) 0 0
\(535\) 25.0132 30.3610i 1.08142 1.31262i
\(536\) 0 0
\(537\) −25.6714 25.6714i −1.10780 1.10780i
\(538\) 0 0
\(539\) 1.40873 1.40873i 0.0606782 0.0606782i
\(540\) 0 0
\(541\) 14.5013 + 14.5013i 0.623459 + 0.623459i 0.946414 0.322955i \(-0.104676\pi\)
−0.322955 + 0.946414i \(0.604676\pi\)
\(542\) 0 0
\(543\) −26.7672 + 26.7672i −1.14869 + 1.14869i
\(544\) 0 0
\(545\) 0.104924 + 1.08644i 0.00449444 + 0.0465380i
\(546\) 0 0
\(547\) 30.2936i 1.29526i 0.761955 + 0.647630i \(0.224240\pi\)
−0.761955 + 0.647630i \(0.775760\pi\)
\(548\) 0 0
\(549\) 0.579476 + 0.579476i 0.0247314 + 0.0247314i
\(550\) 0 0
\(551\) 2.26088 0.0963169
\(552\) 0 0
\(553\) −17.1644 + 17.1644i −0.729904 + 0.729904i
\(554\) 0 0
\(555\) −34.6699 28.5631i −1.47165 1.21244i
\(556\) 0 0
\(557\) −9.72758 −0.412171 −0.206085 0.978534i \(-0.566072\pi\)
−0.206085 + 0.978534i \(0.566072\pi\)
\(558\) 0 0
\(559\) 58.9433 2.49304
\(560\) 0 0
\(561\) 5.79245 0.244557
\(562\) 0 0
\(563\) 17.7853 0.749562 0.374781 0.927113i \(-0.377718\pi\)
0.374781 + 0.927113i \(0.377718\pi\)
\(564\) 0 0
\(565\) 17.1125 1.65265i 0.719928 0.0695276i
\(566\) 0 0
\(567\) −17.3492 + 17.3492i −0.728597 + 0.728597i
\(568\) 0 0
\(569\) 15.7897 0.661938 0.330969 0.943642i \(-0.392624\pi\)
0.330969 + 0.943642i \(0.392624\pi\)
\(570\) 0 0
\(571\) −23.3108 23.3108i −0.975528 0.975528i 0.0241793 0.999708i \(-0.492303\pi\)
−0.999708 + 0.0241793i \(0.992303\pi\)
\(572\) 0 0
\(573\) 5.74079i 0.239825i
\(574\) 0 0
\(575\) −19.4820 + 28.9187i −0.812456 + 1.20599i
\(576\) 0 0
\(577\) 25.7383 25.7383i 1.07150 1.07150i 0.0742597 0.997239i \(-0.476341\pi\)
0.997239 0.0742597i \(-0.0236594\pi\)
\(578\) 0 0
\(579\) −0.163026 0.163026i −0.00677514 0.00677514i
\(580\) 0 0
\(581\) 6.79020 6.79020i 0.281705 0.281705i
\(582\) 0 0
\(583\) 3.04260 + 3.04260i 0.126011 + 0.126011i
\(584\) 0 0
\(585\) 8.73697 + 7.19803i 0.361229 + 0.297602i
\(586\) 0 0
\(587\) −23.1327 −0.954790 −0.477395 0.878689i \(-0.658419\pi\)
−0.477395 + 0.878689i \(0.658419\pi\)
\(588\) 0 0
\(589\) −2.81715 + 2.81715i −0.116079 + 0.116079i
\(590\) 0 0
\(591\) 15.3171i 0.630063i
\(592\) 0 0
\(593\) −25.5047 25.5047i −1.04735 1.04735i −0.998822 0.0485322i \(-0.984546\pi\)
−0.0485322 0.998822i \(-0.515454\pi\)
\(594\) 0 0
\(595\) 10.8146 + 8.90969i 0.443354 + 0.365261i
\(596\) 0 0
\(597\) 21.5365i 0.881432i
\(598\) 0 0
\(599\) 11.0699i 0.452304i 0.974092 + 0.226152i \(0.0726146\pi\)
−0.974092 + 0.226152i \(0.927385\pi\)
\(600\) 0 0
\(601\) 13.7579i 0.561197i −0.959825 0.280599i \(-0.909467\pi\)
0.959825 0.280599i \(-0.0905330\pi\)
\(602\) 0 0
\(603\) 7.70322i 0.313700i
\(604\) 0 0
\(605\) 17.0185 + 14.0209i 0.691902 + 0.570030i
\(606\) 0 0
\(607\) 18.4675 + 18.4675i 0.749573 + 0.749573i 0.974399 0.224826i \(-0.0721813\pi\)
−0.224826 + 0.974399i \(0.572181\pi\)
\(608\) 0 0
\(609\) 9.10526i 0.368964i
\(610\) 0 0
\(611\) −0.619968 + 0.619968i −0.0250812 + 0.0250812i
\(612\) 0 0
\(613\) −11.6810 −0.471790 −0.235895 0.971779i \(-0.575802\pi\)
−0.235895 + 0.971779i \(0.575802\pi\)
\(614\) 0 0
\(615\) 23.4826 + 19.3464i 0.946912 + 0.780122i
\(616\) 0 0
\(617\) −29.1000 29.1000i −1.17152 1.17152i −0.981847 0.189677i \(-0.939256\pi\)
−0.189677 0.981847i \(-0.560744\pi\)
\(618\) 0 0
\(619\) −4.23279 + 4.23279i −0.170130 + 0.170130i −0.787036 0.616906i \(-0.788386\pi\)
0.616906 + 0.787036i \(0.288386\pi\)
\(620\) 0 0
\(621\) −20.7927 20.7927i −0.834383 0.834383i
\(622\) 0 0
\(623\) 0.0682883 0.0682883i 0.00273591 0.00273591i
\(624\) 0 0
\(625\) −23.1689 + 9.39149i −0.926758 + 0.375660i
\(626\) 0 0
\(627\) 2.31220i 0.0923402i
\(628\) 0 0
\(629\) −20.0197 20.0197i −0.798239 0.798239i
\(630\) 0 0
\(631\) 1.33886 0.0532991 0.0266496 0.999645i \(-0.491516\pi\)
0.0266496 + 0.999645i \(0.491516\pi\)
\(632\) 0 0
\(633\) −17.5096 + 17.5096i −0.695944 + 0.695944i
\(634\) 0 0
\(635\) −19.7404 + 1.90644i −0.783373 + 0.0756548i
\(636\) 0 0
\(637\) 11.1001 0.439803
\(638\) 0 0
\(639\) 3.09933 0.122608
\(640\) 0 0
\(641\) 24.5069 0.967965 0.483982 0.875078i \(-0.339190\pi\)
0.483982 + 0.875078i \(0.339190\pi\)
\(642\) 0 0
\(643\) 10.8979 0.429771 0.214885 0.976639i \(-0.431062\pi\)
0.214885 + 0.976639i \(0.431062\pi\)
\(644\) 0 0
\(645\) 33.5760 + 27.6619i 1.32205 + 1.08919i
\(646\) 0 0
\(647\) 11.6612 11.6612i 0.458448 0.458448i −0.439698 0.898146i \(-0.644915\pi\)
0.898146 + 0.439698i \(0.144915\pi\)
\(648\) 0 0
\(649\) −5.23285 −0.205407
\(650\) 0 0
\(651\) 11.3455 + 11.3455i 0.444666 + 0.444666i
\(652\) 0 0
\(653\) 5.28393i 0.206776i 0.994641 + 0.103388i \(0.0329684\pi\)
−0.994641 + 0.103388i \(0.967032\pi\)
\(654\) 0 0
\(655\) −0.491000 5.08409i −0.0191849 0.198652i
\(656\) 0 0
\(657\) −2.50351 + 2.50351i −0.0976713 + 0.0976713i
\(658\) 0 0
\(659\) 16.2902 + 16.2902i 0.634578 + 0.634578i 0.949213 0.314635i \(-0.101882\pi\)
−0.314635 + 0.949213i \(0.601882\pi\)
\(660\) 0 0
\(661\) −12.7924 + 12.7924i −0.497566 + 0.497566i −0.910679 0.413114i \(-0.864441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(662\) 0 0
\(663\) 22.8209 + 22.8209i 0.886291 + 0.886291i
\(664\) 0 0
\(665\) 3.55652 4.31690i 0.137916 0.167402i
\(666\) 0 0
\(667\) 14.2810 0.552962
\(668\) 0 0
\(669\) −25.8420 + 25.8420i −0.999111 + 0.999111i
\(670\) 0 0
\(671\) 1.02711i 0.0396512i
\(672\) 0 0
\(673\) 11.9553 + 11.9553i 0.460841 + 0.460841i 0.898931 0.438090i \(-0.144345\pi\)
−0.438090 + 0.898931i \(0.644345\pi\)
\(674\) 0 0
\(675\) −4.03454 20.6931i −0.155290 0.796480i
\(676\) 0 0
\(677\) 3.18699i 0.122486i 0.998123 + 0.0612430i \(0.0195065\pi\)
−0.998123 + 0.0612430i \(0.980494\pi\)
\(678\) 0 0
\(679\) 6.12535i 0.235069i
\(680\) 0 0
\(681\) 37.9613i 1.45468i
\(682\) 0 0
\(683\) 35.1661i 1.34559i −0.739827 0.672797i \(-0.765093\pi\)
0.739827 0.672797i \(-0.234907\pi\)
\(684\) 0 0
\(685\) −21.5167 + 2.07799i −0.822112 + 0.0793961i
\(686\) 0 0
\(687\) −25.9331 25.9331i −0.989410 0.989410i
\(688\) 0 0
\(689\) 23.9743i 0.913346i
\(690\) 0 0
\(691\) −2.90121 + 2.90121i −0.110367 + 0.110367i −0.760134 0.649767i \(-0.774867\pi\)
0.649767 + 0.760134i \(0.274867\pi\)
\(692\) 0 0
\(693\) −2.05860 −0.0781999
\(694\) 0 0
\(695\) 4.17758 + 43.2571i 0.158465 + 1.64083i
\(696\) 0 0
\(697\) 13.5598 + 13.5598i 0.513614 + 0.513614i
\(698\) 0 0
\(699\) −40.6011 + 40.6011i −1.53568 + 1.53568i
\(700\) 0 0
\(701\) 15.7397 + 15.7397i 0.594481 + 0.594481i 0.938839 0.344358i \(-0.111903\pi\)
−0.344358 + 0.938839i \(0.611903\pi\)
\(702\) 0 0
\(703\) −7.99136 + 7.99136i −0.301400 + 0.301400i
\(704\) 0 0
\(705\) −0.644103 + 0.0622047i −0.0242583 + 0.00234276i
\(706\) 0 0
\(707\) 15.9095i 0.598339i
\(708\) 0 0
\(709\) 1.95755 + 1.95755i 0.0735172 + 0.0735172i 0.742909 0.669392i \(-0.233445\pi\)
−0.669392 + 0.742909i \(0.733445\pi\)
\(710\) 0 0
\(711\) −9.12243 −0.342118
\(712\) 0 0
\(713\) −17.7947 + 17.7947i −0.666416 + 0.666416i
\(714\) 0 0
\(715\) −1.36387 14.1222i −0.0510057 0.528142i
\(716\) 0 0
\(717\) 27.6818 1.03379
\(718\) 0 0
\(719\) −0.0658604 −0.00245618 −0.00122809 0.999999i \(-0.500391\pi\)
−0.00122809 + 0.999999i \(0.500391\pi\)
\(720\) 0 0
\(721\) −1.41692 −0.0527687
\(722\) 0 0
\(723\) −25.1223 −0.934309
\(724\) 0 0
\(725\) 8.49181 + 5.72078i 0.315378 + 0.212465i
\(726\) 0 0
\(727\) 16.2286 16.2286i 0.601885 0.601885i −0.338927 0.940813i \(-0.610064\pi\)
0.940813 + 0.338927i \(0.110064\pi\)
\(728\) 0 0
\(729\) 15.6045 0.577943
\(730\) 0 0
\(731\) 19.3881 + 19.3881i 0.717095 + 0.717095i
\(732\) 0 0
\(733\) 0.669106i 0.0247140i −0.999924 0.0123570i \(-0.996067\pi\)
0.999924 0.0123570i \(-0.00393345\pi\)
\(734\) 0 0
\(735\) 6.32298 + 5.20925i 0.233227 + 0.192146i
\(736\) 0 0
\(737\) −6.82691 + 6.82691i −0.251472 + 0.251472i
\(738\) 0 0
\(739\) 23.4183 + 23.4183i 0.861454 + 0.861454i 0.991507 0.130053i \(-0.0415147\pi\)
−0.130053 + 0.991507i \(0.541515\pi\)
\(740\) 0 0
\(741\) 9.10952 9.10952i 0.334647 0.334647i
\(742\) 0 0
\(743\) −30.0968 30.0968i −1.10414 1.10414i −0.993905 0.110238i \(-0.964839\pi\)
−0.110238 0.993905i \(-0.535161\pi\)
\(744\) 0 0
\(745\) 5.47092 0.528358i 0.200439 0.0193575i
\(746\) 0 0
\(747\) 3.60882 0.132040
\(748\) 0 0
\(749\) −28.1838 + 28.1838i −1.02981 + 1.02981i
\(750\) 0 0
\(751\) 53.2724i 1.94394i 0.235107 + 0.971970i \(0.424456\pi\)
−0.235107 + 0.971970i \(0.575544\pi\)
\(752\) 0 0
\(753\) −13.4259 13.4259i −0.489267 0.489267i
\(754\) 0 0
\(755\) 8.29666 10.0705i 0.301946 0.366502i
\(756\) 0 0
\(757\) 27.1717i 0.987574i 0.869583 + 0.493787i \(0.164388\pi\)
−0.869583 + 0.493787i \(0.835612\pi\)
\(758\) 0 0
\(759\) 14.6051i 0.530132i
\(760\) 0 0
\(761\) 12.9068i 0.467870i 0.972252 + 0.233935i \(0.0751604\pi\)
−0.972252 + 0.233935i \(0.924840\pi\)
\(762\) 0 0
\(763\) 1.10593i 0.0400374i
\(764\) 0 0
\(765\) 0.506198 + 5.24147i 0.0183016 + 0.189506i
\(766\) 0 0
\(767\) −20.6162 20.6162i −0.744409 0.744409i
\(768\) 0 0
\(769\) 34.4858i 1.24359i 0.783180 + 0.621795i \(0.213596\pi\)
−0.783180 + 0.621795i \(0.786404\pi\)
\(770\) 0 0
\(771\) 13.0806 13.0806i 0.471087 0.471087i
\(772\) 0 0
\(773\) 26.6789 0.959574 0.479787 0.877385i \(-0.340714\pi\)
0.479787 + 0.877385i \(0.340714\pi\)
\(774\) 0 0
\(775\) −17.7095 + 3.45281i −0.636143 + 0.124029i
\(776\) 0 0
\(777\) 32.1836 + 32.1836i 1.15458 + 1.15458i
\(778\) 0 0
\(779\) 5.41272 5.41272i 0.193931 0.193931i
\(780\) 0 0
\(781\) −2.74675 2.74675i −0.0982864 0.0982864i
\(782\) 0 0
\(783\) −6.10566 + 6.10566i −0.218199 + 0.218199i
\(784\) 0 0
\(785\) −4.47493 + 5.43167i −0.159717 + 0.193865i
\(786\) 0 0
\(787\) 33.2611i 1.18563i −0.805338 0.592815i \(-0.798016\pi\)
0.805338 0.592815i \(-0.201984\pi\)
\(788\) 0 0
\(789\) −14.3659 14.3659i −0.511439 0.511439i
\(790\) 0 0
\(791\) −17.4195 −0.619365
\(792\) 0 0
\(793\) 4.04658 4.04658i 0.143698 0.143698i
\(794\) 0 0
\(795\) −11.2510 + 13.6565i −0.399033 + 0.484346i
\(796\) 0 0
\(797\) 15.9072 0.563461 0.281730 0.959494i \(-0.409092\pi\)
0.281730 + 0.959494i \(0.409092\pi\)