Properties

Label 320.2.s.b.303.1
Level $320$
Weight $2$
Character 320.303
Analytic conductor $2.555$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 320.s (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.55521286468\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 303.1
Root \(-0.480367 - 1.33013i\) of defining polynomial
Character \(\chi\) \(=\) 320.303
Dual form 320.2.s.b.207.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.85601 q^{3} +(-1.71489 - 1.43498i) q^{5} +(0.458895 - 0.458895i) q^{7} +5.15678 q^{9} +O(q^{10})\) \(q-2.85601 q^{3} +(-1.71489 - 1.43498i) q^{5} +(0.458895 - 0.458895i) q^{7} +5.15678 q^{9} +(0.492763 + 0.492763i) q^{11} +4.52109i q^{13} +(4.89773 + 4.09831i) q^{15} +(-3.12823 + 3.12823i) q^{17} +(4.04508 + 4.04508i) q^{19} +(-1.31061 + 1.31061i) q^{21} +(1.80660 + 1.80660i) q^{23} +(0.881683 + 4.92165i) q^{25} -6.15978 q^{27} +(3.83926 - 3.83926i) q^{29} -0.139949i q^{31} +(-1.40733 - 1.40733i) q^{33} +(-1.44546 + 0.128450i) q^{35} -5.84330i q^{37} -12.9123i q^{39} +4.55648i q^{41} +7.49928i q^{43} +(-8.84330 - 7.39986i) q^{45} +(-4.14073 - 4.14073i) q^{47} +6.57883i q^{49} +(8.93426 - 8.93426i) q^{51} +2.75773 q^{53} +(-0.137930 - 1.55214i) q^{55} +(-11.5528 - 11.5528i) q^{57} +(-3.62521 + 3.62521i) q^{59} +(3.72781 + 3.72781i) q^{61} +(2.36642 - 2.36642i) q^{63} +(6.48766 - 7.75317i) q^{65} +3.32677i q^{67} +(-5.15965 - 5.15965i) q^{69} -1.37056 q^{71} +(2.55028 - 2.55028i) q^{73} +(-2.51809 - 14.0563i) q^{75} +0.452252 q^{77} -3.86426 q^{79} +2.12204 q^{81} -14.4698 q^{83} +(9.85351 - 0.875628i) q^{85} +(-10.9650 + 10.9650i) q^{87} +3.35011 q^{89} +(2.07470 + 2.07470i) q^{91} +0.399696i q^{93} +(-1.13226 - 12.7415i) q^{95} +(-4.95582 + 4.95582i) q^{97} +(2.54107 + 2.54107i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + O(q^{10}) \) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + 2q^{11} + 20q^{15} - 6q^{17} + 2q^{19} - 16q^{21} + 2q^{23} - 6q^{25} + 24q^{27} + 14q^{29} - 8q^{33} - 2q^{35} - 14q^{45} - 38q^{47} - 8q^{51} + 12q^{53} + 6q^{55} - 24q^{57} - 10q^{59} + 14q^{61} + 6q^{63} - 32q^{69} - 24q^{71} - 14q^{73} - 16q^{75} - 44q^{77} + 16q^{79} + 2q^{81} - 40q^{83} + 14q^{85} - 24q^{87} + 12q^{89} - 34q^{95} + 18q^{97} - 22q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.85601 −1.64892 −0.824458 0.565923i \(-0.808520\pi\)
−0.824458 + 0.565923i \(0.808520\pi\)
\(4\) 0 0
\(5\) −1.71489 1.43498i −0.766921 0.641741i
\(6\) 0 0
\(7\) 0.458895 0.458895i 0.173446 0.173446i −0.615046 0.788491i \(-0.710862\pi\)
0.788491 + 0.615046i \(0.210862\pi\)
\(8\) 0 0
\(9\) 5.15678 1.71893
\(10\) 0 0
\(11\) 0.492763 + 0.492763i 0.148574 + 0.148574i 0.777481 0.628907i \(-0.216497\pi\)
−0.628907 + 0.777481i \(0.716497\pi\)
\(12\) 0 0
\(13\) 4.52109i 1.25393i 0.779049 + 0.626963i \(0.215702\pi\)
−0.779049 + 0.626963i \(0.784298\pi\)
\(14\) 0 0
\(15\) 4.89773 + 4.09831i 1.26459 + 1.05818i
\(16\) 0 0
\(17\) −3.12823 + 3.12823i −0.758708 + 0.758708i −0.976087 0.217379i \(-0.930249\pi\)
0.217379 + 0.976087i \(0.430249\pi\)
\(18\) 0 0
\(19\) 4.04508 + 4.04508i 0.928005 + 0.928005i 0.997577 0.0695721i \(-0.0221634\pi\)
−0.0695721 + 0.997577i \(0.522163\pi\)
\(20\) 0 0
\(21\) −1.31061 + 1.31061i −0.285998 + 0.285998i
\(22\) 0 0
\(23\) 1.80660 + 1.80660i 0.376701 + 0.376701i 0.869911 0.493209i \(-0.164176\pi\)
−0.493209 + 0.869911i \(0.664176\pi\)
\(24\) 0 0
\(25\) 0.881683 + 4.92165i 0.176337 + 0.984330i
\(26\) 0 0
\(27\) −6.15978 −1.18545
\(28\) 0 0
\(29\) 3.83926 3.83926i 0.712932 0.712932i −0.254215 0.967148i \(-0.581817\pi\)
0.967148 + 0.254215i \(0.0818172\pi\)
\(30\) 0 0
\(31\) 0.139949i 0.0251356i −0.999921 0.0125678i \(-0.995999\pi\)
0.999921 0.0125678i \(-0.00400057\pi\)
\(32\) 0 0
\(33\) −1.40733 1.40733i −0.244985 0.244985i
\(34\) 0 0
\(35\) −1.44546 + 0.128450i −0.244327 + 0.0217120i
\(36\) 0 0
\(37\) 5.84330i 0.960633i −0.877095 0.480317i \(-0.840522\pi\)
0.877095 0.480317i \(-0.159478\pi\)
\(38\) 0 0
\(39\) 12.9123i 2.06762i
\(40\) 0 0
\(41\) 4.55648i 0.711602i 0.934562 + 0.355801i \(0.115792\pi\)
−0.934562 + 0.355801i \(0.884208\pi\)
\(42\) 0 0
\(43\) 7.49928i 1.14363i 0.820383 + 0.571815i \(0.193760\pi\)
−0.820383 + 0.571815i \(0.806240\pi\)
\(44\) 0 0
\(45\) −8.84330 7.39986i −1.31828 1.10311i
\(46\) 0 0
\(47\) −4.14073 4.14073i −0.603987 0.603987i 0.337381 0.941368i \(-0.390459\pi\)
−0.941368 + 0.337381i \(0.890459\pi\)
\(48\) 0 0
\(49\) 6.57883i 0.939833i
\(50\) 0 0
\(51\) 8.93426 8.93426i 1.25105 1.25105i
\(52\) 0 0
\(53\) 2.75773 0.378803 0.189402 0.981900i \(-0.439345\pi\)
0.189402 + 0.981900i \(0.439345\pi\)
\(54\) 0 0
\(55\) −0.137930 1.55214i −0.0185985 0.209290i
\(56\) 0 0
\(57\) −11.5528 11.5528i −1.53020 1.53020i
\(58\) 0 0
\(59\) −3.62521 + 3.62521i −0.471962 + 0.471962i −0.902549 0.430587i \(-0.858306\pi\)
0.430587 + 0.902549i \(0.358306\pi\)
\(60\) 0 0
\(61\) 3.72781 + 3.72781i 0.477298 + 0.477298i 0.904266 0.426969i \(-0.140419\pi\)
−0.426969 + 0.904266i \(0.640419\pi\)
\(62\) 0 0
\(63\) 2.36642 2.36642i 0.298141 0.298141i
\(64\) 0 0
\(65\) 6.48766 7.75317i 0.804696 0.961662i
\(66\) 0 0
\(67\) 3.32677i 0.406430i 0.979134 + 0.203215i \(0.0651390\pi\)
−0.979134 + 0.203215i \(0.934861\pi\)
\(68\) 0 0
\(69\) −5.15965 5.15965i −0.621149 0.621149i
\(70\) 0 0
\(71\) −1.37056 −0.162655 −0.0813275 0.996687i \(-0.525916\pi\)
−0.0813275 + 0.996687i \(0.525916\pi\)
\(72\) 0 0
\(73\) 2.55028 2.55028i 0.298488 0.298488i −0.541933 0.840422i \(-0.682307\pi\)
0.840422 + 0.541933i \(0.182307\pi\)
\(74\) 0 0
\(75\) −2.51809 14.0563i −0.290764 1.62308i
\(76\) 0 0
\(77\) 0.452252 0.0515389
\(78\) 0 0
\(79\) −3.86426 −0.434763 −0.217382 0.976087i \(-0.569752\pi\)
−0.217382 + 0.976087i \(0.569752\pi\)
\(80\) 0 0
\(81\) 2.12204 0.235782
\(82\) 0 0
\(83\) −14.4698 −1.58827 −0.794133 0.607744i \(-0.792075\pi\)
−0.794133 + 0.607744i \(0.792075\pi\)
\(84\) 0 0
\(85\) 9.85351 0.875628i 1.06876 0.0949752i
\(86\) 0 0
\(87\) −10.9650 + 10.9650i −1.17557 + 1.17557i
\(88\) 0 0
\(89\) 3.35011 0.355111 0.177556 0.984111i \(-0.443181\pi\)
0.177556 + 0.984111i \(0.443181\pi\)
\(90\) 0 0
\(91\) 2.07470 + 2.07470i 0.217488 + 0.217488i
\(92\) 0 0
\(93\) 0.399696i 0.0414466i
\(94\) 0 0
\(95\) −1.13226 12.7415i −0.116168 1.30725i
\(96\) 0 0
\(97\) −4.95582 + 4.95582i −0.503187 + 0.503187i −0.912427 0.409240i \(-0.865794\pi\)
0.409240 + 0.912427i \(0.365794\pi\)
\(98\) 0 0
\(99\) 2.54107 + 2.54107i 0.255387 + 0.255387i
\(100\) 0 0
\(101\) −1.84536 + 1.84536i −0.183621 + 0.183621i −0.792931 0.609311i \(-0.791446\pi\)
0.609311 + 0.792931i \(0.291446\pi\)
\(102\) 0 0
\(103\) 11.6655 + 11.6655i 1.14944 + 1.14944i 0.986664 + 0.162773i \(0.0520437\pi\)
0.162773 + 0.986664i \(0.447956\pi\)
\(104\) 0 0
\(105\) 4.12823 0.366853i 0.402874 0.0358012i
\(106\) 0 0
\(107\) 15.3106 1.48013 0.740067 0.672534i \(-0.234794\pi\)
0.740067 + 0.672534i \(0.234794\pi\)
\(108\) 0 0
\(109\) −12.4798 + 12.4798i −1.19535 + 1.19535i −0.219803 + 0.975544i \(0.570542\pi\)
−0.975544 + 0.219803i \(0.929458\pi\)
\(110\) 0 0
\(111\) 16.6885i 1.58400i
\(112\) 0 0
\(113\) 2.53557 + 2.53557i 0.238526 + 0.238526i 0.816240 0.577713i \(-0.196055\pi\)
−0.577713 + 0.816240i \(0.696055\pi\)
\(114\) 0 0
\(115\) −0.505686 5.69053i −0.0471555 0.530645i
\(116\) 0 0
\(117\) 23.3143i 2.15541i
\(118\) 0 0
\(119\) 2.87106i 0.263189i
\(120\) 0 0
\(121\) 10.5144i 0.955852i
\(122\) 0 0
\(123\) 13.0133i 1.17337i
\(124\) 0 0
\(125\) 5.55047 9.70527i 0.496449 0.868066i
\(126\) 0 0
\(127\) −0.615790 0.615790i −0.0546426 0.0546426i 0.679257 0.733900i \(-0.262302\pi\)
−0.733900 + 0.679257i \(0.762302\pi\)
\(128\) 0 0
\(129\) 21.4180i 1.88575i
\(130\) 0 0
\(131\) −9.55413 + 9.55413i −0.834748 + 0.834748i −0.988162 0.153414i \(-0.950973\pi\)
0.153414 + 0.988162i \(0.450973\pi\)
\(132\) 0 0
\(133\) 3.71253 0.321917
\(134\) 0 0
\(135\) 10.5633 + 8.83914i 0.909147 + 0.760752i
\(136\) 0 0
\(137\) 3.70277 + 3.70277i 0.316349 + 0.316349i 0.847363 0.531014i \(-0.178189\pi\)
−0.531014 + 0.847363i \(0.678189\pi\)
\(138\) 0 0
\(139\) 5.46761 5.46761i 0.463756 0.463756i −0.436128 0.899885i \(-0.643651\pi\)
0.899885 + 0.436128i \(0.143651\pi\)
\(140\) 0 0
\(141\) 11.8260 + 11.8260i 0.995925 + 0.995925i
\(142\) 0 0
\(143\) −2.22783 + 2.22783i −0.186300 + 0.186300i
\(144\) 0 0
\(145\) −12.0931 + 1.07465i −1.00428 + 0.0892450i
\(146\) 0 0
\(147\) 18.7892i 1.54971i
\(148\) 0 0
\(149\) −4.21561 4.21561i −0.345356 0.345356i 0.513021 0.858376i \(-0.328526\pi\)
−0.858376 + 0.513021i \(0.828526\pi\)
\(150\) 0 0
\(151\) −12.4417 −1.01249 −0.506244 0.862390i \(-0.668966\pi\)
−0.506244 + 0.862390i \(0.668966\pi\)
\(152\) 0 0
\(153\) −16.1316 + 16.1316i −1.30416 + 1.30416i
\(154\) 0 0
\(155\) −0.200824 + 0.239997i −0.0161306 + 0.0192771i
\(156\) 0 0
\(157\) 7.50500 0.598964 0.299482 0.954102i \(-0.403186\pi\)
0.299482 + 0.954102i \(0.403186\pi\)
\(158\) 0 0
\(159\) −7.87609 −0.624615
\(160\) 0 0
\(161\) 1.65807 0.130675
\(162\) 0 0
\(163\) 23.7284 1.85855 0.929277 0.369383i \(-0.120431\pi\)
0.929277 + 0.369383i \(0.120431\pi\)
\(164\) 0 0
\(165\) 0.393929 + 4.43291i 0.0306673 + 0.345102i
\(166\) 0 0
\(167\) 0.402976 0.402976i 0.0311832 0.0311832i −0.691343 0.722526i \(-0.742981\pi\)
0.722526 + 0.691343i \(0.242981\pi\)
\(168\) 0 0
\(169\) −7.44028 −0.572330
\(170\) 0 0
\(171\) 20.8596 + 20.8596i 1.59517 + 1.59517i
\(172\) 0 0
\(173\) 15.4500i 1.17464i −0.809355 0.587320i \(-0.800183\pi\)
0.809355 0.587320i \(-0.199817\pi\)
\(174\) 0 0
\(175\) 2.66312 + 1.85392i 0.201313 + 0.140143i
\(176\) 0 0
\(177\) 10.3536 10.3536i 0.778225 0.778225i
\(178\) 0 0
\(179\) 5.20444 + 5.20444i 0.388998 + 0.388998i 0.874330 0.485332i \(-0.161301\pi\)
−0.485332 + 0.874330i \(0.661301\pi\)
\(180\) 0 0
\(181\) −9.08925 + 9.08925i −0.675599 + 0.675599i −0.959001 0.283402i \(-0.908537\pi\)
0.283402 + 0.959001i \(0.408537\pi\)
\(182\) 0 0
\(183\) −10.6467 10.6467i −0.787024 0.787024i
\(184\) 0 0
\(185\) −8.38500 + 10.0206i −0.616478 + 0.736730i
\(186\) 0 0
\(187\) −3.08295 −0.225448
\(188\) 0 0
\(189\) −2.82669 + 2.82669i −0.205611 + 0.205611i
\(190\) 0 0
\(191\) 15.1075i 1.09314i −0.837413 0.546571i \(-0.815933\pi\)
0.837413 0.546571i \(-0.184067\pi\)
\(192\) 0 0
\(193\) 4.19166 + 4.19166i 0.301722 + 0.301722i 0.841687 0.539965i \(-0.181563\pi\)
−0.539965 + 0.841687i \(0.681563\pi\)
\(194\) 0 0
\(195\) −18.5288 + 22.1431i −1.32688 + 1.58570i
\(196\) 0 0
\(197\) 4.03184i 0.287256i 0.989632 + 0.143628i \(0.0458769\pi\)
−0.989632 + 0.143628i \(0.954123\pi\)
\(198\) 0 0
\(199\) 5.43055i 0.384961i −0.981301 0.192481i \(-0.938347\pi\)
0.981301 0.192481i \(-0.0616533\pi\)
\(200\) 0 0
\(201\) 9.50129i 0.670169i
\(202\) 0 0
\(203\) 3.52363i 0.247310i
\(204\) 0 0
\(205\) 6.53844 7.81385i 0.456664 0.545743i
\(206\) 0 0
\(207\) 9.31622 + 9.31622i 0.647522 + 0.647522i
\(208\) 0 0
\(209\) 3.98653i 0.275754i
\(210\) 0 0
\(211\) −3.23020 + 3.23020i −0.222376 + 0.222376i −0.809498 0.587122i \(-0.800261\pi\)
0.587122 + 0.809498i \(0.300261\pi\)
\(212\) 0 0
\(213\) 3.91432 0.268205
\(214\) 0 0
\(215\) 10.7613 12.8604i 0.733914 0.877074i
\(216\) 0 0
\(217\) −0.0642220 0.0642220i −0.00435967 0.00435967i
\(218\) 0 0
\(219\) −7.28363 + 7.28363i −0.492182 + 0.492182i
\(220\) 0 0
\(221\) −14.1430 14.1430i −0.951363 0.951363i
\(222\) 0 0
\(223\) −8.17319 + 8.17319i −0.547317 + 0.547317i −0.925664 0.378347i \(-0.876493\pi\)
0.378347 + 0.925664i \(0.376493\pi\)
\(224\) 0 0
\(225\) 4.54664 + 25.3799i 0.303110 + 1.69199i
\(226\) 0 0
\(227\) 1.54068i 0.102258i −0.998692 0.0511292i \(-0.983718\pi\)
0.998692 0.0511292i \(-0.0162820\pi\)
\(228\) 0 0
\(229\) 17.5646 + 17.5646i 1.16070 + 1.16070i 0.984322 + 0.176378i \(0.0564382\pi\)
0.176378 + 0.984322i \(0.443562\pi\)
\(230\) 0 0
\(231\) −1.29164 −0.0849834
\(232\) 0 0
\(233\) −9.99018 + 9.99018i −0.654479 + 0.654479i −0.954068 0.299590i \(-0.903150\pi\)
0.299590 + 0.954068i \(0.403150\pi\)
\(234\) 0 0
\(235\) 1.15904 + 13.0427i 0.0756072 + 0.850814i
\(236\) 0 0
\(237\) 11.0364 0.716889
\(238\) 0 0
\(239\) 26.2762 1.69967 0.849833 0.527052i \(-0.176703\pi\)
0.849833 + 0.527052i \(0.176703\pi\)
\(240\) 0 0
\(241\) −0.113242 −0.00729456 −0.00364728 0.999993i \(-0.501161\pi\)
−0.00364728 + 0.999993i \(0.501161\pi\)
\(242\) 0 0
\(243\) 12.4188 0.796665
\(244\) 0 0
\(245\) 9.44047 11.2820i 0.603130 0.720778i
\(246\) 0 0
\(247\) −18.2882 + 18.2882i −1.16365 + 1.16365i
\(248\) 0 0
\(249\) 41.3258 2.61892
\(250\) 0 0
\(251\) −19.2220 19.2220i −1.21328 1.21328i −0.969941 0.243339i \(-0.921757\pi\)
−0.243339 0.969941i \(-0.578243\pi\)
\(252\) 0 0
\(253\) 1.78045i 0.111936i
\(254\) 0 0
\(255\) −28.1417 + 2.50080i −1.76230 + 0.156606i
\(256\) 0 0
\(257\) −0.757800 + 0.757800i −0.0472703 + 0.0472703i −0.730347 0.683077i \(-0.760642\pi\)
0.683077 + 0.730347i \(0.260642\pi\)
\(258\) 0 0
\(259\) −2.68146 2.68146i −0.166618 0.166618i
\(260\) 0 0
\(261\) 19.7982 19.7982i 1.22548 1.22548i
\(262\) 0 0
\(263\) −5.73017 5.73017i −0.353338 0.353338i 0.508012 0.861350i \(-0.330380\pi\)
−0.861350 + 0.508012i \(0.830380\pi\)
\(264\) 0 0
\(265\) −4.72919 3.95728i −0.290512 0.243094i
\(266\) 0 0
\(267\) −9.56795 −0.585549
\(268\) 0 0
\(269\) −9.78879 + 9.78879i −0.596833 + 0.596833i −0.939468 0.342635i \(-0.888680\pi\)
0.342635 + 0.939468i \(0.388680\pi\)
\(270\) 0 0
\(271\) 4.10159i 0.249154i −0.992210 0.124577i \(-0.960243\pi\)
0.992210 0.124577i \(-0.0397574\pi\)
\(272\) 0 0
\(273\) −5.92537 5.92537i −0.358620 0.358620i
\(274\) 0 0
\(275\) −1.99075 + 2.85967i −0.120046 + 0.172444i
\(276\) 0 0
\(277\) 24.6755i 1.48261i −0.671169 0.741305i \(-0.734207\pi\)
0.671169 0.741305i \(-0.265793\pi\)
\(278\) 0 0
\(279\) 0.721688i 0.0432063i
\(280\) 0 0
\(281\) 23.6688i 1.41196i −0.708230 0.705981i \(-0.750506\pi\)
0.708230 0.705981i \(-0.249494\pi\)
\(282\) 0 0
\(283\) 13.0492i 0.775694i −0.921724 0.387847i \(-0.873219\pi\)
0.921724 0.387847i \(-0.126781\pi\)
\(284\) 0 0
\(285\) 3.23375 + 36.3897i 0.191551 + 2.15554i
\(286\) 0 0
\(287\) 2.09094 + 2.09094i 0.123424 + 0.123424i
\(288\) 0 0
\(289\) 2.57168i 0.151275i
\(290\) 0 0
\(291\) 14.1539 14.1539i 0.829714 0.829714i
\(292\) 0 0
\(293\) −31.6731 −1.85036 −0.925181 0.379526i \(-0.876087\pi\)
−0.925181 + 0.379526i \(0.876087\pi\)
\(294\) 0 0
\(295\) 11.4189 1.01474i 0.664835 0.0590802i
\(296\) 0 0
\(297\) −3.03531 3.03531i −0.176127 0.176127i
\(298\) 0 0
\(299\) −8.16779 + 8.16779i −0.472355 + 0.472355i
\(300\) 0 0
\(301\) 3.44138 + 3.44138i 0.198358 + 0.198358i
\(302\) 0 0
\(303\) 5.27037 5.27037i 0.302775 0.302775i
\(304\) 0 0
\(305\) −1.04346 11.7421i −0.0597482 0.672351i
\(306\) 0 0
\(307\) 27.3597i 1.56150i −0.624843 0.780751i \(-0.714837\pi\)
0.624843 0.780751i \(-0.285163\pi\)
\(308\) 0 0
\(309\) −33.3168 33.3168i −1.89532 1.89532i
\(310\) 0 0
\(311\) 15.8076 0.896368 0.448184 0.893941i \(-0.352071\pi\)
0.448184 + 0.893941i \(0.352071\pi\)
\(312\) 0 0
\(313\) 13.8388 13.8388i 0.782217 0.782217i −0.197988 0.980205i \(-0.563441\pi\)
0.980205 + 0.197988i \(0.0634406\pi\)
\(314\) 0 0
\(315\) −7.45390 + 0.662387i −0.419980 + 0.0373213i
\(316\) 0 0
\(317\) −35.0092 −1.96631 −0.983156 0.182766i \(-0.941495\pi\)
−0.983156 + 0.182766i \(0.941495\pi\)
\(318\) 0 0
\(319\) 3.78369 0.211846
\(320\) 0 0
\(321\) −43.7272 −2.44062
\(322\) 0 0
\(323\) −25.3079 −1.40817
\(324\) 0 0
\(325\) −22.2512 + 3.98617i −1.23428 + 0.221113i
\(326\) 0 0
\(327\) 35.6424 35.6424i 1.97103 1.97103i
\(328\) 0 0
\(329\) −3.80032 −0.209518
\(330\) 0 0
\(331\) −16.8212 16.8212i −0.924578 0.924578i 0.0727709 0.997349i \(-0.476816\pi\)
−0.997349 + 0.0727709i \(0.976816\pi\)
\(332\) 0 0
\(333\) 30.1326i 1.65126i
\(334\) 0 0
\(335\) 4.77384 5.70504i 0.260823 0.311700i
\(336\) 0 0
\(337\) 14.4984 14.4984i 0.789777 0.789777i −0.191680 0.981457i \(-0.561394\pi\)
0.981457 + 0.191680i \(0.0613937\pi\)
\(338\) 0 0
\(339\) −7.24160 7.24160i −0.393310 0.393310i
\(340\) 0 0
\(341\) 0.0689618 0.0689618i 0.00373449 0.00373449i
\(342\) 0 0
\(343\) 6.23125 + 6.23125i 0.336456 + 0.336456i
\(344\) 0 0
\(345\) 1.44424 + 16.2522i 0.0777555 + 0.874989i
\(346\) 0 0
\(347\) 16.7705 0.900286 0.450143 0.892956i \(-0.351373\pi\)
0.450143 + 0.892956i \(0.351373\pi\)
\(348\) 0 0
\(349\) −1.86337 + 1.86337i −0.0997439 + 0.0997439i −0.755218 0.655474i \(-0.772469\pi\)
0.655474 + 0.755218i \(0.272469\pi\)
\(350\) 0 0
\(351\) 27.8489i 1.48647i
\(352\) 0 0
\(353\) 24.1362 + 24.1362i 1.28464 + 1.28464i 0.937998 + 0.346642i \(0.112678\pi\)
0.346642 + 0.937998i \(0.387322\pi\)
\(354\) 0 0
\(355\) 2.35035 + 1.96672i 0.124744 + 0.104382i
\(356\) 0 0
\(357\) 8.19976i 0.433978i
\(358\) 0 0
\(359\) 12.2500i 0.646532i 0.946308 + 0.323266i \(0.104781\pi\)
−0.946308 + 0.323266i \(0.895219\pi\)
\(360\) 0 0
\(361\) 13.7253i 0.722386i
\(362\) 0 0
\(363\) 30.0291i 1.57612i
\(364\) 0 0
\(365\) −8.03305 + 0.713853i −0.420469 + 0.0373648i
\(366\) 0 0
\(367\) 2.71307 + 2.71307i 0.141621 + 0.141621i 0.774363 0.632742i \(-0.218071\pi\)
−0.632742 + 0.774363i \(0.718071\pi\)
\(368\) 0 0
\(369\) 23.4967i 1.22319i
\(370\) 0 0
\(371\) 1.26551 1.26551i 0.0657018 0.0657018i
\(372\) 0 0
\(373\) 16.4846 0.853541 0.426771 0.904360i \(-0.359651\pi\)
0.426771 + 0.904360i \(0.359651\pi\)
\(374\) 0 0
\(375\) −15.8522 + 27.7183i −0.818603 + 1.43137i
\(376\) 0 0
\(377\) 17.3576 + 17.3576i 0.893964 + 0.893964i
\(378\) 0 0
\(379\) −13.7716 + 13.7716i −0.707401 + 0.707401i −0.965988 0.258587i \(-0.916743\pi\)
0.258587 + 0.965988i \(0.416743\pi\)
\(380\) 0 0
\(381\) 1.75870 + 1.75870i 0.0901011 + 0.0901011i
\(382\) 0 0
\(383\) 11.5530 11.5530i 0.590332 0.590332i −0.347389 0.937721i \(-0.612932\pi\)
0.937721 + 0.347389i \(0.112932\pi\)
\(384\) 0 0
\(385\) −0.775562 0.648972i −0.0395263 0.0330747i
\(386\) 0 0
\(387\) 38.6722i 1.96582i
\(388\) 0 0
\(389\) 15.7728 + 15.7728i 0.799712 + 0.799712i 0.983050 0.183338i \(-0.0586903\pi\)
−0.183338 + 0.983050i \(0.558690\pi\)
\(390\) 0 0
\(391\) −11.3029 −0.571612
\(392\) 0 0
\(393\) 27.2867 27.2867i 1.37643 1.37643i
\(394\) 0 0
\(395\) 6.62677 + 5.54512i 0.333429 + 0.279006i
\(396\) 0 0
\(397\) 29.9558 1.50344 0.751720 0.659483i \(-0.229225\pi\)
0.751720 + 0.659483i \(0.229225\pi\)
\(398\) 0 0
\(399\) −10.6030 −0.530815
\(400\) 0 0
\(401\) 19.9241 0.994963 0.497481 0.867475i \(-0.334258\pi\)
0.497481 + 0.867475i \(0.334258\pi\)
\(402\) 0 0
\(403\) 0.632724 0.0315182
\(404\) 0 0
\(405\) −3.63906 3.04508i −0.180826 0.151311i
\(406\) 0 0
\(407\) 2.87936 2.87936i 0.142725 0.142725i
\(408\) 0 0
\(409\) −5.89856 −0.291665 −0.145832 0.989309i \(-0.546586\pi\)
−0.145832 + 0.989309i \(0.546586\pi\)
\(410\) 0 0
\(411\) −10.5751 10.5751i −0.521634 0.521634i
\(412\) 0 0
\(413\) 3.32717i 0.163720i
\(414\) 0 0
\(415\) 24.8141 + 20.7638i 1.21808 + 1.01926i
\(416\) 0 0
\(417\) −15.6155 + 15.6155i −0.764696 + 0.764696i
\(418\) 0 0
\(419\) 8.24430 + 8.24430i 0.402760 + 0.402760i 0.879205 0.476444i \(-0.158075\pi\)
−0.476444 + 0.879205i \(0.658075\pi\)
\(420\) 0 0
\(421\) −17.1776 + 17.1776i −0.837184 + 0.837184i −0.988487 0.151304i \(-0.951653\pi\)
0.151304 + 0.988487i \(0.451653\pi\)
\(422\) 0 0
\(423\) −21.3528 21.3528i −1.03821 1.03821i
\(424\) 0 0
\(425\) −18.1542 12.6380i −0.880607 0.613031i
\(426\) 0 0
\(427\) 3.42135 0.165571
\(428\) 0 0
\(429\) 6.36269 6.36269i 0.307194 0.307194i
\(430\) 0 0
\(431\) 32.1769i 1.54990i 0.632020 + 0.774952i \(0.282226\pi\)
−0.632020 + 0.774952i \(0.717774\pi\)
\(432\) 0 0
\(433\) −20.3383 20.3383i −0.977396 0.977396i 0.0223540 0.999750i \(-0.492884\pi\)
−0.999750 + 0.0223540i \(0.992884\pi\)
\(434\) 0 0
\(435\) 34.5381 3.06921i 1.65598 0.147158i
\(436\) 0 0
\(437\) 14.6156i 0.699161i
\(438\) 0 0
\(439\) 35.4180i 1.69041i −0.534444 0.845204i \(-0.679479\pi\)
0.534444 0.845204i \(-0.320521\pi\)
\(440\) 0 0
\(441\) 33.9256i 1.61550i
\(442\) 0 0
\(443\) 3.03787i 0.144333i 0.997393 + 0.0721667i \(0.0229913\pi\)
−0.997393 + 0.0721667i \(0.977009\pi\)
\(444\) 0 0
\(445\) −5.74507 4.80733i −0.272342 0.227890i
\(446\) 0 0
\(447\) 12.0398 + 12.0398i 0.569463 + 0.569463i
\(448\) 0 0
\(449\) 8.65559i 0.408483i 0.978921 + 0.204241i \(0.0654727\pi\)
−0.978921 + 0.204241i \(0.934527\pi\)
\(450\) 0 0
\(451\) −2.24526 + 2.24526i −0.105725 + 0.105725i
\(452\) 0 0
\(453\) 35.5335 1.66951
\(454\) 0 0
\(455\) −0.580733 6.53504i −0.0272252 0.306367i
\(456\) 0 0
\(457\) 13.5575 + 13.5575i 0.634193 + 0.634193i 0.949117 0.314924i \(-0.101979\pi\)
−0.314924 + 0.949117i \(0.601979\pi\)
\(458\) 0 0
\(459\) 19.2692 19.2692i 0.899411 0.899411i
\(460\) 0 0
\(461\) −1.19682 1.19682i −0.0557416 0.0557416i 0.678687 0.734428i \(-0.262550\pi\)
−0.734428 + 0.678687i \(0.762550\pi\)
\(462\) 0 0
\(463\) −21.1815 + 21.1815i −0.984390 + 0.984390i −0.999880 0.0154904i \(-0.995069\pi\)
0.0154904 + 0.999880i \(0.495069\pi\)
\(464\) 0 0
\(465\) 0.573555 0.685435i 0.0265980 0.0317863i
\(466\) 0 0
\(467\) 24.8448i 1.14968i 0.818266 + 0.574840i \(0.194936\pi\)
−0.818266 + 0.574840i \(0.805064\pi\)
\(468\) 0 0
\(469\) 1.52664 + 1.52664i 0.0704936 + 0.0704936i
\(470\) 0 0
\(471\) −21.4343 −0.987642
\(472\) 0 0
\(473\) −3.69537 + 3.69537i −0.169913 + 0.169913i
\(474\) 0 0
\(475\) −16.3420 + 23.4749i −0.749822 + 1.07710i
\(476\) 0 0
\(477\) 14.2210 0.651135
\(478\) 0 0
\(479\) −23.5766 −1.07724 −0.538621 0.842548i \(-0.681054\pi\)
−0.538621 + 0.842548i \(0.681054\pi\)
\(480\) 0 0
\(481\) 26.4181 1.20456
\(482\) 0 0
\(483\) −4.73547 −0.215471
\(484\) 0 0
\(485\) 15.6102 1.38719i 0.708821 0.0629891i
\(486\) 0 0
\(487\) 2.63011 2.63011i 0.119182 0.119182i −0.645001 0.764182i \(-0.723143\pi\)
0.764182 + 0.645001i \(0.223143\pi\)
\(488\) 0 0
\(489\) −67.7686 −3.06460
\(490\) 0 0
\(491\) 18.6899 + 18.6899i 0.843465 + 0.843465i 0.989308 0.145843i \(-0.0465894\pi\)
−0.145843 + 0.989308i \(0.546589\pi\)
\(492\) 0 0
\(493\) 24.0202i 1.08182i
\(494\) 0 0
\(495\) −0.711274 8.00403i −0.0319694 0.359754i
\(496\) 0 0
\(497\) −0.628940 + 0.628940i −0.0282118 + 0.0282118i
\(498\) 0 0
\(499\) −9.69342 9.69342i −0.433937 0.433937i 0.456028 0.889965i \(-0.349272\pi\)
−0.889965 + 0.456028i \(0.849272\pi\)
\(500\) 0 0
\(501\) −1.15090 + 1.15090i −0.0514185 + 0.0514185i
\(502\) 0 0
\(503\) 13.0434 + 13.0434i 0.581577 + 0.581577i 0.935336 0.353759i \(-0.115097\pi\)
−0.353759 + 0.935336i \(0.615097\pi\)
\(504\) 0 0
\(505\) 5.81265 0.516538i 0.258659 0.0229856i
\(506\) 0 0
\(507\) 21.2495 0.943724
\(508\) 0 0
\(509\) 25.8539 25.8539i 1.14595 1.14595i 0.158611 0.987341i \(-0.449298\pi\)
0.987341 0.158611i \(-0.0507016\pi\)
\(510\) 0 0
\(511\) 2.34062i 0.103543i
\(512\) 0 0
\(513\) −24.9168 24.9168i −1.10010 1.10010i
\(514\) 0 0
\(515\) −3.26531 36.7448i −0.143887 1.61917i
\(516\) 0 0
\(517\) 4.08080i 0.179473i
\(518\) 0 0
\(519\) 44.1252i 1.93688i
\(520\) 0 0
\(521\) 25.0528i 1.09758i 0.835959 + 0.548792i \(0.184912\pi\)
−0.835959 + 0.548792i \(0.815088\pi\)
\(522\) 0 0
\(523\) 40.3434i 1.76410i −0.471160 0.882048i \(-0.656165\pi\)
0.471160 0.882048i \(-0.343835\pi\)
\(524\) 0 0
\(525\) −7.60588 5.29481i −0.331948 0.231084i
\(526\) 0 0
\(527\) 0.437794 + 0.437794i 0.0190706 + 0.0190706i
\(528\) 0 0
\(529\) 16.4724i 0.716192i
\(530\) 0 0
\(531\) −18.6944 + 18.6944i −0.811267 + 0.811267i
\(532\) 0 0
\(533\) −20.6003 −0.892296
\(534\) 0 0
\(535\) −26.2560 21.9704i −1.13515 0.949862i
\(536\) 0 0
\(537\) −14.8639 14.8639i −0.641425 0.641425i
\(538\) 0 0
\(539\) −3.24180 + 3.24180i −0.139634 + 0.139634i
\(540\) 0 0
\(541\) −24.7446 24.7446i −1.06385 1.06385i −0.997817 0.0660360i \(-0.978965\pi\)
−0.0660360 0.997817i \(-0.521035\pi\)
\(542\) 0 0
\(543\) 25.9590 25.9590i 1.11401 1.11401i
\(544\) 0 0
\(545\) 39.3097 3.49324i 1.68384 0.149634i
\(546\) 0 0
\(547\) 19.0254i 0.813465i 0.913547 + 0.406733i \(0.133332\pi\)
−0.913547 + 0.406733i \(0.866668\pi\)
\(548\) 0 0
\(549\) 19.2235 + 19.2235i 0.820440 + 0.820440i
\(550\) 0 0
\(551\) 31.0602 1.32321
\(552\) 0 0
\(553\) −1.77329 + 1.77329i −0.0754079 + 0.0754079i
\(554\) 0 0
\(555\) 23.9476 28.6189i 1.01652 1.21481i
\(556\) 0 0
\(557\) 30.9517 1.31146 0.655732 0.754993i \(-0.272360\pi\)
0.655732 + 0.754993i \(0.272360\pi\)
\(558\) 0 0
\(559\) −33.9050 −1.43403
\(560\) 0 0
\(561\) 8.80494 0.371745
\(562\) 0 0
\(563\) −3.50238 −0.147608 −0.0738039 0.997273i \(-0.523514\pi\)
−0.0738039 + 0.997273i \(0.523514\pi\)
\(564\) 0 0
\(565\) −0.709734 7.98670i −0.0298587 0.336003i
\(566\) 0 0
\(567\) 0.973793 0.973793i 0.0408955 0.0408955i
\(568\) 0 0
\(569\) 0.525780 0.0220418 0.0110209 0.999939i \(-0.496492\pi\)
0.0110209 + 0.999939i \(0.496492\pi\)
\(570\) 0 0
\(571\) 11.2487 + 11.2487i 0.470743 + 0.470743i 0.902155 0.431412i \(-0.141984\pi\)
−0.431412 + 0.902155i \(0.641984\pi\)
\(572\) 0 0
\(573\) 43.1472i 1.80250i
\(574\) 0 0
\(575\) −7.29859 + 10.4843i −0.304372 + 0.437224i
\(576\) 0 0
\(577\) −2.92884 + 2.92884i −0.121929 + 0.121929i −0.765438 0.643509i \(-0.777478\pi\)
0.643509 + 0.765438i \(0.277478\pi\)
\(578\) 0 0
\(579\) −11.9714 11.9714i −0.497515 0.497515i
\(580\) 0 0
\(581\) −6.64011 + 6.64011i −0.275478 + 0.275478i
\(582\) 0 0
\(583\) 1.35891 + 1.35891i 0.0562801 + 0.0562801i
\(584\) 0 0
\(585\) 33.4555 39.9814i 1.38321 1.65303i
\(586\) 0 0
\(587\) −23.1574 −0.955809 −0.477905 0.878412i \(-0.658604\pi\)
−0.477905 + 0.878412i \(0.658604\pi\)
\(588\) 0 0
\(589\) 0.566106 0.566106i 0.0233260 0.0233260i
\(590\) 0 0
\(591\) 11.5150i 0.473662i
\(592\) 0 0
\(593\) −13.9325 13.9325i −0.572141 0.572141i 0.360585 0.932726i \(-0.382577\pi\)
−0.932726 + 0.360585i \(0.882577\pi\)
\(594\) 0 0
\(595\) 4.11990 4.92354i 0.168900 0.201846i
\(596\) 0 0
\(597\) 15.5097i 0.634769i
\(598\) 0 0
\(599\) 33.5311i 1.37004i 0.728523 + 0.685021i \(0.240207\pi\)
−0.728523 + 0.685021i \(0.759793\pi\)
\(600\) 0 0
\(601\) 19.4164i 0.792011i −0.918248 0.396005i \(-0.870396\pi\)
0.918248 0.396005i \(-0.129604\pi\)
\(602\) 0 0
\(603\) 17.1554i 0.698623i
\(604\) 0 0
\(605\) −15.0879 + 18.0310i −0.613409 + 0.733063i
\(606\) 0 0
\(607\) −9.51495 9.51495i −0.386200 0.386200i 0.487130 0.873330i \(-0.338044\pi\)
−0.873330 + 0.487130i \(0.838044\pi\)
\(608\) 0 0
\(609\) 10.0635i 0.407794i
\(610\) 0 0
\(611\) 18.7206 18.7206i 0.757355 0.757355i
\(612\) 0 0
\(613\) −9.37947 −0.378833 −0.189417 0.981897i \(-0.560660\pi\)
−0.189417 + 0.981897i \(0.560660\pi\)
\(614\) 0 0
\(615\) −18.6738 + 22.3164i −0.753002 + 0.899884i
\(616\) 0 0
\(617\) 3.54768 + 3.54768i 0.142824 + 0.142824i 0.774904 0.632079i \(-0.217798\pi\)
−0.632079 + 0.774904i \(0.717798\pi\)
\(618\) 0 0
\(619\) 24.6158 24.6158i 0.989392 0.989392i −0.0105527 0.999944i \(-0.503359\pi\)
0.999944 + 0.0105527i \(0.00335910\pi\)
\(620\) 0 0
\(621\) −11.1282 11.1282i −0.446561 0.446561i
\(622\) 0 0
\(623\) 1.53735 1.53735i 0.0615926 0.0615926i
\(624\) 0 0
\(625\) −23.4453 + 8.67867i −0.937811 + 0.347147i
\(626\) 0 0
\(627\) 11.3856i 0.454695i
\(628\) 0 0
\(629\) 18.2792 + 18.2792i 0.728840 + 0.728840i
\(630\) 0 0
\(631\) 28.8921 1.15018 0.575088 0.818092i \(-0.304968\pi\)
0.575088 + 0.818092i \(0.304968\pi\)
\(632\) 0 0
\(633\) 9.22547 9.22547i 0.366679 0.366679i
\(634\) 0 0
\(635\) 0.172367 + 1.93966i 0.00684016 + 0.0769729i
\(636\) 0 0
\(637\) −29.7435 −1.17848
\(638\) 0 0
\(639\) −7.06765 −0.279592
\(640\) 0 0
\(641\) −16.6914 −0.659271 −0.329636 0.944108i \(-0.606926\pi\)
−0.329636 + 0.944108i \(0.606926\pi\)
\(642\) 0 0
\(643\) 5.22468 0.206041 0.103021 0.994679i \(-0.467149\pi\)
0.103021 + 0.994679i \(0.467149\pi\)
\(644\) 0 0
\(645\) −30.7343 + 36.7295i −1.21016 + 1.44622i
\(646\) 0 0
\(647\) −21.6797 + 21.6797i −0.852318 + 0.852318i −0.990418 0.138100i \(-0.955900\pi\)
0.138100 + 0.990418i \(0.455900\pi\)
\(648\) 0 0
\(649\) −3.57273 −0.140242
\(650\) 0 0
\(651\) 0.183418 + 0.183418i 0.00718874 + 0.00718874i
\(652\) 0 0
\(653\) 22.7642i 0.890833i 0.895323 + 0.445417i \(0.146944\pi\)
−0.895323 + 0.445417i \(0.853056\pi\)
\(654\) 0 0
\(655\) 30.0942 2.67431i 1.17588 0.104494i
\(656\) 0 0
\(657\) 13.1513 13.1513i 0.513079 0.513079i
\(658\) 0 0
\(659\) −1.66201 1.66201i −0.0647427 0.0647427i 0.673994 0.738737i \(-0.264577\pi\)
−0.738737 + 0.673994i \(0.764577\pi\)
\(660\) 0 0
\(661\) −5.62818 + 5.62818i −0.218911 + 0.218911i −0.808039 0.589129i \(-0.799471\pi\)
0.589129 + 0.808039i \(0.299471\pi\)
\(662\) 0 0
\(663\) 40.3926 + 40.3926i 1.56872 + 1.56872i
\(664\) 0 0
\(665\) −6.36657 5.32739i −0.246885 0.206587i
\(666\) 0 0
\(667\) 13.8720 0.537125
\(668\) 0 0
\(669\) 23.3427 23.3427i 0.902481 0.902481i
\(670\) 0 0
\(671\) 3.67386i 0.141828i
\(672\) 0 0
\(673\) 0.278251 + 0.278251i 0.0107258 + 0.0107258i 0.712449 0.701724i \(-0.247586\pi\)
−0.701724 + 0.712449i \(0.747586\pi\)
\(674\) 0 0
\(675\) −5.43097 30.3163i −0.209038 1.16687i
\(676\) 0 0
\(677\) 26.3591i 1.01306i −0.862222 0.506531i \(-0.830928\pi\)
0.862222 0.506531i \(-0.169072\pi\)
\(678\) 0 0
\(679\) 4.54840i 0.174551i
\(680\) 0 0
\(681\) 4.40019i 0.168616i
\(682\) 0 0
\(683\) 2.83023i 0.108296i 0.998533 + 0.0541479i \(0.0172442\pi\)
−0.998533 + 0.0541479i \(0.982756\pi\)
\(684\) 0 0
\(685\) −1.03645 11.6632i −0.0396006 0.445629i
\(686\) 0 0
\(687\) −50.1646 50.1646i −1.91390 1.91390i
\(688\) 0 0
\(689\) 12.4679i 0.474991i
\(690\) 0 0
\(691\) −22.1815 + 22.1815i −0.843825 + 0.843825i −0.989354 0.145529i \(-0.953512\pi\)
0.145529 + 0.989354i \(0.453512\pi\)
\(692\) 0 0
\(693\) 2.33217 0.0885917
\(694\) 0 0
\(695\) −17.2222 + 1.53044i −0.653276 + 0.0580531i
\(696\) 0 0
\(697\) −14.2537 14.2537i −0.539898 0.539898i
\(698\) 0 0
\(699\) 28.5320 28.5320i 1.07918 1.07918i
\(700\) 0 0
\(701\) 16.2264 + 16.2264i 0.612864 + 0.612864i 0.943691 0.330828i \(-0.107328\pi\)
−0.330828 + 0.943691i \(0.607328\pi\)
\(702\) 0 0
\(703\) 23.6366 23.6366i 0.891472 0.891472i
\(704\) 0 0
\(705\) −3.31022 37.2502i −0.124670 1.40292i
\(706\) 0 0
\(707\) 1.69365i 0.0636965i
\(708\) 0 0
\(709\) −25.3577 25.3577i −0.952329 0.952329i 0.0465856 0.998914i \(-0.485166\pi\)
−0.998914 + 0.0465856i \(0.985166\pi\)
\(710\) 0 0
\(711\) −19.9271 −0.747326
\(712\) 0 0
\(713\) 0.252832 0.252832i 0.00946863 0.00946863i
\(714\) 0 0
\(715\) 7.01735 0.623594i 0.262434 0.0233211i
\(716\) 0 0
\(717\) −75.0450 −2.80261
\(718\) 0 0
\(719\) 41.3374 1.54163 0.770813 0.637061i \(-0.219850\pi\)
0.770813 + 0.637061i \(0.219850\pi\)
\(720\) 0 0
\(721\) 10.7065 0.398730
\(722\) 0 0
\(723\) 0.323420 0.0120281
\(724\) 0 0
\(725\) 22.2805 + 15.5105i 0.827477 + 0.576045i
\(726\) 0 0
\(727\) 23.4630 23.4630i 0.870193 0.870193i −0.122300 0.992493i \(-0.539027\pi\)
0.992493 + 0.122300i \(0.0390271\pi\)
\(728\) 0 0
\(729\) −41.8342 −1.54942
\(730\) 0 0
\(731\) −23.4595 23.4595i −0.867681 0.867681i
\(732\) 0 0
\(733\) 15.1628i 0.560051i −0.959993 0.280025i \(-0.909657\pi\)
0.959993 0.280025i \(-0.0903429\pi\)
\(734\) 0 0
\(735\) −26.9621 + 32.2214i −0.994511 + 1.18850i
\(736\) 0 0
\(737\) −1.63931 + 1.63931i −0.0603848 + 0.0603848i
\(738\) 0 0
\(739\) −0.974343 0.974343i −0.0358418 0.0358418i 0.688959 0.724801i \(-0.258068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(740\) 0 0
\(741\) 52.2312 52.2312i 1.91876 1.91876i
\(742\) 0 0
\(743\) −29.0897 29.0897i −1.06720 1.06720i −0.997573 0.0696259i \(-0.977819\pi\)
−0.0696259 0.997573i \(-0.522181\pi\)
\(744\) 0 0
\(745\) 1.18000 + 13.2786i 0.0432317 + 0.486490i
\(746\) 0 0
\(747\) −74.6176 −2.73011
\(748\) 0 0
\(749\) 7.02596 7.02596i 0.256723 0.256723i
\(750\) 0 0
\(751\) 7.77705i 0.283789i 0.989882 + 0.141894i \(0.0453193\pi\)
−0.989882 + 0.141894i \(0.954681\pi\)
\(752\) 0 0
\(753\) 54.8981 + 54.8981i 2.00060 + 2.00060i
\(754\) 0 0
\(755\) 21.3361 + 17.8535i 0.776498 + 0.649755i
\(756\) 0 0
\(757\) 1.42073i 0.0516372i −0.999667 0.0258186i \(-0.991781\pi\)
0.999667 0.0258186i \(-0.00821923\pi\)
\(758\) 0 0
\(759\) 5.08497i 0.184573i
\(760\) 0 0
\(761\) 26.6737i 0.966921i −0.875366 0.483460i \(-0.839380\pi\)
0.875366 0.483460i \(-0.160620\pi\)
\(762\) 0 0
\(763\) 11.4538i 0.414656i
\(764\) 0 0
\(765\) 50.8124 4.51542i 1.83713 0.163255i
\(766\) 0 0
\(767\) −16.3899 16.3899i −0.591805 0.591805i
\(768\) 0 0
\(769\) 45.8210i 1.65235i −0.563415 0.826174i \(-0.690513\pi\)
0.563415 0.826174i \(-0.309487\pi\)
\(770\) 0 0
\(771\) 2.16428 2.16428i 0.0779447 0.0779447i
\(772\) 0 0
\(773\) −18.5473 −0.667101 −0.333550 0.942732i \(-0.608247\pi\)
−0.333550 + 0.942732i \(0.608247\pi\)
\(774\) 0 0
\(775\) 0.688782 0.123391i 0.0247418 0.00443233i
\(776\) 0 0
\(777\) 7.65827 + 7.65827i 0.274739 + 0.274739i
\(778\) 0 0
\(779\) −18.4313 + 18.4313i −0.660370 + 0.660370i
\(780\) 0 0
\(781\) −0.675359 0.675359i −0.0241662 0.0241662i
\(782\) 0 0
\(783\) −23.6490 + 23.6490i −0.845146 + 0.845146i
\(784\) 0 0
\(785\) −12.8702 10.7695i −0.459358 0.384380i
\(786\) 0 0
\(787\) 21.3016i 0.759319i −0.925126 0.379659i \(-0.876041\pi\)
0.925126 0.379659i \(-0.123959\pi\)
\(788\) 0 0
\(789\) 16.3654 + 16.3654i 0.582624 + 0.582624i
\(790\) 0 0
\(791\) 2.32712 0.0827427
\(792\) 0 0
\(793\) −16.8538 + 16.8538i −0.598496 + 0.598496i
\(794\) 0 0
\(795\) 13.5066 + 11.3020i 0.479030 + 0.400841i
\(796\) 0 0
\(797\) −2.35457 −0.0834033 −0.0417016 0.999130i \(-0.513278\pi\)
−0.0417016 + 0.999130i \(0.513278\pi\)