Properties

Label 320.2.s.b.207.4
Level $320$
Weight $2$
Character 320.207
Analytic conductor $2.555$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 320.s (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.55521286468\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 207.4
Root \(-0.635486 - 1.26339i\) of defining polynomial
Character \(\chi\) \(=\) 320.207
Dual form 320.2.s.b.303.4

$q$-expansion

\(f(q)\) \(=\) \(q-0.692712 q^{3} +(-0.245325 + 2.22257i) q^{5} +(0.343872 + 0.343872i) q^{7} -2.52015 q^{9} +O(q^{10})\) \(q-0.692712 q^{3} +(-0.245325 + 2.22257i) q^{5} +(0.343872 + 0.343872i) q^{7} -2.52015 q^{9} +(-0.843672 + 0.843672i) q^{11} +3.68390i q^{13} +(0.169939 - 1.53960i) q^{15} +(0.412137 + 0.412137i) q^{17} +(-5.37721 + 5.37721i) q^{19} +(-0.238204 - 0.238204i) q^{21} +(3.08788 - 3.08788i) q^{23} +(-4.87963 - 1.09050i) q^{25} +3.82387 q^{27} +(4.22969 + 4.22969i) q^{29} +8.75966i q^{31} +(0.584422 - 0.584422i) q^{33} +(-0.848640 + 0.679919i) q^{35} -5.41752i q^{37} -2.55188i q^{39} -2.54777i q^{41} +4.30732i q^{43} +(0.618255 - 5.60121i) q^{45} +(4.56972 - 4.56972i) q^{47} -6.76350i q^{49} +(-0.285492 - 0.285492i) q^{51} +6.07536 q^{53} +(-1.66815 - 2.08209i) q^{55} +(3.72486 - 3.72486i) q^{57} +(-7.33694 - 7.33694i) q^{59} +(-4.81576 + 4.81576i) q^{61} +(-0.866609 - 0.866609i) q^{63} +(-8.18773 - 0.903753i) q^{65} -14.3626i q^{67} +(-2.13901 + 2.13901i) q^{69} +2.97605 q^{71} +(6.87152 + 6.87152i) q^{73} +(3.38018 + 0.755404i) q^{75} -0.580231 q^{77} +10.1654 q^{79} +4.91161 q^{81} +7.15276 q^{83} +(-1.01711 + 0.814896i) q^{85} +(-2.92996 - 2.92996i) q^{87} -1.10953 q^{89} +(-1.26679 + 1.26679i) q^{91} -6.06792i q^{93} +(-10.6321 - 13.2704i) q^{95} +(7.15920 + 7.15920i) q^{97} +(2.12618 - 2.12618i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + O(q^{10}) \) \( 18q + 2q^{5} - 2q^{7} + 10q^{9} + 2q^{11} + 20q^{15} - 6q^{17} + 2q^{19} - 16q^{21} + 2q^{23} - 6q^{25} + 24q^{27} + 14q^{29} - 8q^{33} - 2q^{35} - 14q^{45} - 38q^{47} - 8q^{51} + 12q^{53} + 6q^{55} - 24q^{57} - 10q^{59} + 14q^{61} + 6q^{63} - 32q^{69} - 24q^{71} - 14q^{73} - 16q^{75} - 44q^{77} + 16q^{79} + 2q^{81} - 40q^{83} + 14q^{85} - 24q^{87} + 12q^{89} - 34q^{95} + 18q^{97} - 22q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.692712 −0.399937 −0.199969 0.979802i \(-0.564084\pi\)
−0.199969 + 0.979802i \(0.564084\pi\)
\(4\) 0 0
\(5\) −0.245325 + 2.22257i −0.109713 + 0.993963i
\(6\) 0 0
\(7\) 0.343872 + 0.343872i 0.129971 + 0.129971i 0.769100 0.639129i \(-0.220705\pi\)
−0.639129 + 0.769100i \(0.720705\pi\)
\(8\) 0 0
\(9\) −2.52015 −0.840050
\(10\) 0 0
\(11\) −0.843672 + 0.843672i −0.254377 + 0.254377i −0.822762 0.568386i \(-0.807568\pi\)
0.568386 + 0.822762i \(0.307568\pi\)
\(12\) 0 0
\(13\) 3.68390i 1.02173i 0.859661 + 0.510865i \(0.170675\pi\)
−0.859661 + 0.510865i \(0.829325\pi\)
\(14\) 0 0
\(15\) 0.169939 1.53960i 0.0438782 0.397523i
\(16\) 0 0
\(17\) 0.412137 + 0.412137i 0.0999579 + 0.0999579i 0.755317 0.655359i \(-0.227483\pi\)
−0.655359 + 0.755317i \(0.727483\pi\)
\(18\) 0 0
\(19\) −5.37721 + 5.37721i −1.23362 + 1.23362i −0.271052 + 0.962565i \(0.587371\pi\)
−0.962565 + 0.271052i \(0.912629\pi\)
\(20\) 0 0
\(21\) −0.238204 0.238204i −0.0519804 0.0519804i
\(22\) 0 0
\(23\) 3.08788 3.08788i 0.643868 0.643868i −0.307636 0.951504i \(-0.599538\pi\)
0.951504 + 0.307636i \(0.0995380\pi\)
\(24\) 0 0
\(25\) −4.87963 1.09050i −0.975926 0.218101i
\(26\) 0 0
\(27\) 3.82387 0.735905
\(28\) 0 0
\(29\) 4.22969 + 4.22969i 0.785434 + 0.785434i 0.980742 0.195308i \(-0.0625707\pi\)
−0.195308 + 0.980742i \(0.562571\pi\)
\(30\) 0 0
\(31\) 8.75966i 1.57328i 0.617411 + 0.786641i \(0.288182\pi\)
−0.617411 + 0.786641i \(0.711818\pi\)
\(32\) 0 0
\(33\) 0.584422 0.584422i 0.101735 0.101735i
\(34\) 0 0
\(35\) −0.848640 + 0.679919i −0.143446 + 0.114927i
\(36\) 0 0
\(37\) 5.41752i 0.890634i −0.895373 0.445317i \(-0.853091\pi\)
0.895373 0.445317i \(-0.146909\pi\)
\(38\) 0 0
\(39\) 2.55188i 0.408628i
\(40\) 0 0
\(41\) 2.54777i 0.397895i −0.980010 0.198948i \(-0.936248\pi\)
0.980010 0.198948i \(-0.0637524\pi\)
\(42\) 0 0
\(43\) 4.30732i 0.656861i 0.944528 + 0.328430i \(0.106520\pi\)
−0.944528 + 0.328430i \(0.893480\pi\)
\(44\) 0 0
\(45\) 0.618255 5.60121i 0.0921641 0.834979i
\(46\) 0 0
\(47\) 4.56972 4.56972i 0.666562 0.666562i −0.290356 0.956919i \(-0.593774\pi\)
0.956919 + 0.290356i \(0.0937738\pi\)
\(48\) 0 0
\(49\) 6.76350i 0.966215i
\(50\) 0 0
\(51\) −0.285492 0.285492i −0.0399769 0.0399769i
\(52\) 0 0
\(53\) 6.07536 0.834515 0.417257 0.908788i \(-0.362991\pi\)
0.417257 + 0.908788i \(0.362991\pi\)
\(54\) 0 0
\(55\) −1.66815 2.08209i −0.224933 0.280749i
\(56\) 0 0
\(57\) 3.72486 3.72486i 0.493369 0.493369i
\(58\) 0 0
\(59\) −7.33694 7.33694i −0.955189 0.955189i 0.0438495 0.999038i \(-0.486038\pi\)
−0.999038 + 0.0438495i \(0.986038\pi\)
\(60\) 0 0
\(61\) −4.81576 + 4.81576i −0.616595 + 0.616595i −0.944656 0.328062i \(-0.893605\pi\)
0.328062 + 0.944656i \(0.393605\pi\)
\(62\) 0 0
\(63\) −0.866609 0.866609i −0.109183 0.109183i
\(64\) 0 0
\(65\) −8.18773 0.903753i −1.01556 0.112097i
\(66\) 0 0
\(67\) 14.3626i 1.75467i −0.479880 0.877334i \(-0.659320\pi\)
0.479880 0.877334i \(-0.340680\pi\)
\(68\) 0 0
\(69\) −2.13901 + 2.13901i −0.257507 + 0.257507i
\(70\) 0 0
\(71\) 2.97605 0.353193 0.176596 0.984283i \(-0.443491\pi\)
0.176596 + 0.984283i \(0.443491\pi\)
\(72\) 0 0
\(73\) 6.87152 + 6.87152i 0.804250 + 0.804250i 0.983757 0.179507i \(-0.0574501\pi\)
−0.179507 + 0.983757i \(0.557450\pi\)
\(74\) 0 0
\(75\) 3.38018 + 0.755404i 0.390309 + 0.0872266i
\(76\) 0 0
\(77\) −0.580231 −0.0661234
\(78\) 0 0
\(79\) 10.1654 1.14369 0.571847 0.820360i \(-0.306227\pi\)
0.571847 + 0.820360i \(0.306227\pi\)
\(80\) 0 0
\(81\) 4.91161 0.545734
\(82\) 0 0
\(83\) 7.15276 0.785118 0.392559 0.919727i \(-0.371590\pi\)
0.392559 + 0.919727i \(0.371590\pi\)
\(84\) 0 0
\(85\) −1.01711 + 0.814896i −0.110321 + 0.0883878i
\(86\) 0 0
\(87\) −2.92996 2.92996i −0.314124 0.314124i
\(88\) 0 0
\(89\) −1.10953 −0.117610 −0.0588050 0.998269i \(-0.518729\pi\)
−0.0588050 + 0.998269i \(0.518729\pi\)
\(90\) 0 0
\(91\) −1.26679 + 1.26679i −0.132796 + 0.132796i
\(92\) 0 0
\(93\) 6.06792i 0.629214i
\(94\) 0 0
\(95\) −10.6321 13.2704i −1.09083 1.36151i
\(96\) 0 0
\(97\) 7.15920 + 7.15920i 0.726906 + 0.726906i 0.970002 0.243096i \(-0.0781630\pi\)
−0.243096 + 0.970002i \(0.578163\pi\)
\(98\) 0 0
\(99\) 2.12618 2.12618i 0.213689 0.213689i
\(100\) 0 0
\(101\) 0.953394 + 0.953394i 0.0948663 + 0.0948663i 0.752947 0.658081i \(-0.228632\pi\)
−0.658081 + 0.752947i \(0.728632\pi\)
\(102\) 0 0
\(103\) −9.59425 + 9.59425i −0.945350 + 0.945350i −0.998582 0.0532322i \(-0.983048\pi\)
0.0532322 + 0.998582i \(0.483048\pi\)
\(104\) 0 0
\(105\) 0.587863 0.470988i 0.0573696 0.0459637i
\(106\) 0 0
\(107\) 5.28201 0.510631 0.255316 0.966858i \(-0.417821\pi\)
0.255316 + 0.966858i \(0.417821\pi\)
\(108\) 0 0
\(109\) −1.53980 1.53980i −0.147486 0.147486i 0.629508 0.776994i \(-0.283256\pi\)
−0.776994 + 0.629508i \(0.783256\pi\)
\(110\) 0 0
\(111\) 3.75278i 0.356198i
\(112\) 0 0
\(113\) −2.99656 + 2.99656i −0.281893 + 0.281893i −0.833863 0.551971i \(-0.813876\pi\)
0.551971 + 0.833863i \(0.313876\pi\)
\(114\) 0 0
\(115\) 6.10550 + 7.62056i 0.569340 + 0.710621i
\(116\) 0 0
\(117\) 9.28399i 0.858305i
\(118\) 0 0
\(119\) 0.283445i 0.0259833i
\(120\) 0 0
\(121\) 9.57643i 0.870585i
\(122\) 0 0
\(123\) 1.76487i 0.159133i
\(124\) 0 0
\(125\) 3.62081 10.5778i 0.323855 0.946107i
\(126\) 0 0
\(127\) −10.5522 + 10.5522i −0.936360 + 0.936360i −0.998093 0.0617330i \(-0.980337\pi\)
0.0617330 + 0.998093i \(0.480337\pi\)
\(128\) 0 0
\(129\) 2.98373i 0.262703i
\(130\) 0 0
\(131\) 0.850513 + 0.850513i 0.0743096 + 0.0743096i 0.743285 0.668975i \(-0.233267\pi\)
−0.668975 + 0.743285i \(0.733267\pi\)
\(132\) 0 0
\(133\) −3.69814 −0.320670
\(134\) 0 0
\(135\) −0.938091 + 8.49883i −0.0807380 + 0.731463i
\(136\) 0 0
\(137\) 5.50145 5.50145i 0.470021 0.470021i −0.431901 0.901921i \(-0.642157\pi\)
0.901921 + 0.431901i \(0.142157\pi\)
\(138\) 0 0
\(139\) 3.03517 + 3.03517i 0.257440 + 0.257440i 0.824012 0.566572i \(-0.191731\pi\)
−0.566572 + 0.824012i \(0.691731\pi\)
\(140\) 0 0
\(141\) −3.16550 + 3.16550i −0.266583 + 0.266583i
\(142\) 0 0
\(143\) −3.10801 3.10801i −0.259905 0.259905i
\(144\) 0 0
\(145\) −10.4384 + 8.36313i −0.866864 + 0.694520i
\(146\) 0 0
\(147\) 4.68516i 0.386425i
\(148\) 0 0
\(149\) −11.1571 + 11.1571i −0.914023 + 0.914023i −0.996586 0.0825625i \(-0.973690\pi\)
0.0825625 + 0.996586i \(0.473690\pi\)
\(150\) 0 0
\(151\) −3.18265 −0.259000 −0.129500 0.991579i \(-0.541337\pi\)
−0.129500 + 0.991579i \(0.541337\pi\)
\(152\) 0 0
\(153\) −1.03865 1.03865i −0.0839696 0.0839696i
\(154\) 0 0
\(155\) −19.4690 2.14896i −1.56378 0.172609i
\(156\) 0 0
\(157\) −7.05454 −0.563014 −0.281507 0.959559i \(-0.590834\pi\)
−0.281507 + 0.959559i \(0.590834\pi\)
\(158\) 0 0
\(159\) −4.20847 −0.333754
\(160\) 0 0
\(161\) 2.12367 0.167369
\(162\) 0 0
\(163\) 16.0208 1.25484 0.627422 0.778680i \(-0.284110\pi\)
0.627422 + 0.778680i \(0.284110\pi\)
\(164\) 0 0
\(165\) 1.15554 + 1.44229i 0.0899591 + 0.112282i
\(166\) 0 0
\(167\) 16.6023 + 16.6023i 1.28473 + 1.28473i 0.937946 + 0.346780i \(0.112725\pi\)
0.346780 + 0.937946i \(0.387275\pi\)
\(168\) 0 0
\(169\) −0.571141 −0.0439339
\(170\) 0 0
\(171\) 13.5514 13.5514i 1.03630 1.03630i
\(172\) 0 0
\(173\) 14.9958i 1.14011i −0.821607 0.570054i \(-0.806922\pi\)
0.821607 0.570054i \(-0.193078\pi\)
\(174\) 0 0
\(175\) −1.30298 2.05296i −0.0984957 0.155189i
\(176\) 0 0
\(177\) 5.08239 + 5.08239i 0.382016 + 0.382016i
\(178\) 0 0
\(179\) −9.91310 + 9.91310i −0.740940 + 0.740940i −0.972759 0.231819i \(-0.925532\pi\)
0.231819 + 0.972759i \(0.425532\pi\)
\(180\) 0 0
\(181\) 1.04015 + 1.04015i 0.0773139 + 0.0773139i 0.744706 0.667392i \(-0.232590\pi\)
−0.667392 + 0.744706i \(0.732590\pi\)
\(182\) 0 0
\(183\) 3.33593 3.33593i 0.246599 0.246599i
\(184\) 0 0
\(185\) 12.0408 + 1.32905i 0.885258 + 0.0977138i
\(186\) 0 0
\(187\) −0.695417 −0.0508539
\(188\) 0 0
\(189\) 1.31492 + 1.31492i 0.0956466 + 0.0956466i
\(190\) 0 0
\(191\) 3.08419i 0.223164i −0.993755 0.111582i \(-0.964408\pi\)
0.993755 0.111582i \(-0.0355918\pi\)
\(192\) 0 0
\(193\) −12.0915 + 12.0915i −0.870368 + 0.870368i −0.992512 0.122144i \(-0.961023\pi\)
0.122144 + 0.992512i \(0.461023\pi\)
\(194\) 0 0
\(195\) 5.67174 + 0.626040i 0.406162 + 0.0448317i
\(196\) 0 0
\(197\) 13.0186i 0.927540i 0.885956 + 0.463770i \(0.153504\pi\)
−0.885956 + 0.463770i \(0.846496\pi\)
\(198\) 0 0
\(199\) 10.6279i 0.753395i 0.926336 + 0.376697i \(0.122940\pi\)
−0.926336 + 0.376697i \(0.877060\pi\)
\(200\) 0 0
\(201\) 9.94913i 0.701758i
\(202\) 0 0
\(203\) 2.90894i 0.204168i
\(204\) 0 0
\(205\) 5.66260 + 0.625032i 0.395493 + 0.0436541i
\(206\) 0 0
\(207\) −7.78192 + 7.78192i −0.540881 + 0.540881i
\(208\) 0 0
\(209\) 9.07320i 0.627607i
\(210\) 0 0
\(211\) −11.4801 11.4801i −0.790321 0.790321i 0.191225 0.981546i \(-0.438754\pi\)
−0.981546 + 0.191225i \(0.938754\pi\)
\(212\) 0 0
\(213\) −2.06155 −0.141255
\(214\) 0 0
\(215\) −9.57332 1.05669i −0.652895 0.0720659i
\(216\) 0 0
\(217\) −3.01220 + 3.01220i −0.204482 + 0.204482i
\(218\) 0 0
\(219\) −4.75998 4.75998i −0.321650 0.321650i
\(220\) 0 0
\(221\) −1.51827 + 1.51827i −0.102130 + 0.102130i
\(222\) 0 0
\(223\) 2.17863 + 2.17863i 0.145892 + 0.145892i 0.776280 0.630388i \(-0.217104\pi\)
−0.630388 + 0.776280i \(0.717104\pi\)
\(224\) 0 0
\(225\) 12.2974 + 2.74823i 0.819827 + 0.183215i
\(226\) 0 0
\(227\) 9.32318i 0.618801i −0.950932 0.309401i \(-0.899872\pi\)
0.950932 0.309401i \(-0.100128\pi\)
\(228\) 0 0
\(229\) 2.72259 2.72259i 0.179914 0.179914i −0.611404 0.791318i \(-0.709395\pi\)
0.791318 + 0.611404i \(0.209395\pi\)
\(230\) 0 0
\(231\) 0.401933 0.0264452
\(232\) 0 0
\(233\) −12.3897 12.3897i −0.811679 0.811679i 0.173206 0.984886i \(-0.444587\pi\)
−0.984886 + 0.173206i \(0.944587\pi\)
\(234\) 0 0
\(235\) 9.03546 + 11.2776i 0.589408 + 0.735669i
\(236\) 0 0
\(237\) −7.04168 −0.457406
\(238\) 0 0
\(239\) 25.2180 1.63122 0.815609 0.578604i \(-0.196402\pi\)
0.815609 + 0.578604i \(0.196402\pi\)
\(240\) 0 0
\(241\) 12.0218 0.774391 0.387195 0.921998i \(-0.373444\pi\)
0.387195 + 0.921998i \(0.373444\pi\)
\(242\) 0 0
\(243\) −14.8740 −0.954164
\(244\) 0 0
\(245\) 15.0324 + 1.65926i 0.960382 + 0.106006i
\(246\) 0 0
\(247\) −19.8091 19.8091i −1.26042 1.26042i
\(248\) 0 0
\(249\) −4.95480 −0.313998
\(250\) 0 0
\(251\) −7.48911 + 7.48911i −0.472709 + 0.472709i −0.902790 0.430081i \(-0.858485\pi\)
0.430081 + 0.902790i \(0.358485\pi\)
\(252\) 0 0
\(253\) 5.21032i 0.327570i
\(254\) 0 0
\(255\) 0.704565 0.564488i 0.0441215 0.0353496i
\(256\) 0 0
\(257\) −10.0809 10.0809i −0.628832 0.628832i 0.318942 0.947774i \(-0.396672\pi\)
−0.947774 + 0.318942i \(0.896672\pi\)
\(258\) 0 0
\(259\) 1.86293 1.86293i 0.115757 0.115757i
\(260\) 0 0
\(261\) −10.6595 10.6595i −0.659804 0.659804i
\(262\) 0 0
\(263\) 3.83599 3.83599i 0.236537 0.236537i −0.578877 0.815415i \(-0.696509\pi\)
0.815415 + 0.578877i \(0.196509\pi\)
\(264\) 0 0
\(265\) −1.49044 + 13.5029i −0.0915568 + 0.829477i
\(266\) 0 0
\(267\) 0.768585 0.0470367
\(268\) 0 0
\(269\) 13.4250 + 13.4250i 0.818539 + 0.818539i 0.985896 0.167357i \(-0.0535233\pi\)
−0.167357 + 0.985896i \(0.553523\pi\)
\(270\) 0 0
\(271\) 12.3519i 0.750326i −0.926959 0.375163i \(-0.877587\pi\)
0.926959 0.375163i \(-0.122413\pi\)
\(272\) 0 0
\(273\) 0.877522 0.877522i 0.0531100 0.0531100i
\(274\) 0 0
\(275\) 5.03684 3.19678i 0.303733 0.192773i
\(276\) 0 0
\(277\) 6.78804i 0.407854i −0.978986 0.203927i \(-0.934630\pi\)
0.978986 0.203927i \(-0.0653705\pi\)
\(278\) 0 0
\(279\) 22.0757i 1.32164i
\(280\) 0 0
\(281\) 21.5509i 1.28562i −0.766026 0.642810i \(-0.777768\pi\)
0.766026 0.642810i \(-0.222232\pi\)
\(282\) 0 0
\(283\) 9.86809i 0.586597i −0.956021 0.293299i \(-0.905247\pi\)
0.956021 0.293299i \(-0.0947530\pi\)
\(284\) 0 0
\(285\) 7.36495 + 9.19255i 0.436262 + 0.544520i
\(286\) 0 0
\(287\) 0.876108 0.876108i 0.0517150 0.0517150i
\(288\) 0 0
\(289\) 16.6603i 0.980017i
\(290\) 0 0
\(291\) −4.95926 4.95926i −0.290717 0.290717i
\(292\) 0 0
\(293\) 14.1972 0.829410 0.414705 0.909956i \(-0.363885\pi\)
0.414705 + 0.909956i \(0.363885\pi\)
\(294\) 0 0
\(295\) 18.1068 14.5069i 1.05422 0.844626i
\(296\) 0 0
\(297\) −3.22610 + 3.22610i −0.187197 + 0.187197i
\(298\) 0 0
\(299\) 11.3755 + 11.3755i 0.657859 + 0.657859i
\(300\) 0 0
\(301\) −1.48117 + 1.48117i −0.0853731 + 0.0853731i
\(302\) 0 0
\(303\) −0.660428 0.660428i −0.0379406 0.0379406i
\(304\) 0 0
\(305\) −9.52194 11.8848i −0.545224 0.680521i
\(306\) 0 0
\(307\) 20.4161i 1.16521i 0.812756 + 0.582604i \(0.197966\pi\)
−0.812756 + 0.582604i \(0.802034\pi\)
\(308\) 0 0
\(309\) 6.64605 6.64605i 0.378081 0.378081i
\(310\) 0 0
\(311\) 6.81074 0.386202 0.193101 0.981179i \(-0.438146\pi\)
0.193101 + 0.981179i \(0.438146\pi\)
\(312\) 0 0
\(313\) 1.20933 + 1.20933i 0.0683555 + 0.0683555i 0.740458 0.672103i \(-0.234609\pi\)
−0.672103 + 0.740458i \(0.734609\pi\)
\(314\) 0 0
\(315\) 2.13870 1.71350i 0.120502 0.0965447i
\(316\) 0 0
\(317\) −3.44178 −0.193310 −0.0966548 0.995318i \(-0.530814\pi\)
−0.0966548 + 0.995318i \(0.530814\pi\)
\(318\) 0 0
\(319\) −7.13694 −0.399592
\(320\) 0 0
\(321\) −3.65891 −0.204221
\(322\) 0 0
\(323\) −4.43229 −0.246619
\(324\) 0 0
\(325\) 4.01731 17.9761i 0.222840 0.997134i
\(326\) 0 0
\(327\) 1.06664 + 1.06664i 0.0589852 + 0.0589852i
\(328\) 0 0
\(329\) 3.14280 0.173268
\(330\) 0 0
\(331\) 1.48462 1.48462i 0.0816019 0.0816019i −0.665128 0.746730i \(-0.731623\pi\)
0.746730 + 0.665128i \(0.231623\pi\)
\(332\) 0 0
\(333\) 13.6530i 0.748177i
\(334\) 0 0
\(335\) 31.9218 + 3.52350i 1.74408 + 0.192509i
\(336\) 0 0
\(337\) 6.21211 + 6.21211i 0.338395 + 0.338395i 0.855763 0.517368i \(-0.173088\pi\)
−0.517368 + 0.855763i \(0.673088\pi\)
\(338\) 0 0
\(339\) 2.07575 2.07575i 0.112739 0.112739i
\(340\) 0 0
\(341\) −7.39028 7.39028i −0.400206 0.400206i
\(342\) 0 0
\(343\) 4.73288 4.73288i 0.255552 0.255552i
\(344\) 0 0
\(345\) −4.22935 5.27886i −0.227701 0.284204i
\(346\) 0 0
\(347\) −10.1502 −0.544889 −0.272445 0.962171i \(-0.587832\pi\)
−0.272445 + 0.962171i \(0.587832\pi\)
\(348\) 0 0
\(349\) 3.99595 + 3.99595i 0.213898 + 0.213898i 0.805921 0.592023i \(-0.201671\pi\)
−0.592023 + 0.805921i \(0.701671\pi\)
\(350\) 0 0
\(351\) 14.0868i 0.751897i
\(352\) 0 0
\(353\) 22.6637 22.6637i 1.20627 1.20627i 0.234043 0.972226i \(-0.424804\pi\)
0.972226 0.234043i \(-0.0751957\pi\)
\(354\) 0 0
\(355\) −0.730100 + 6.61449i −0.0387497 + 0.351061i
\(356\) 0 0
\(357\) 0.196346i 0.0103917i
\(358\) 0 0
\(359\) 4.31874i 0.227934i −0.993485 0.113967i \(-0.963644\pi\)
0.993485 0.113967i \(-0.0363559\pi\)
\(360\) 0 0
\(361\) 38.8288i 2.04362i
\(362\) 0 0
\(363\) 6.63371i 0.348180i
\(364\) 0 0
\(365\) −16.9582 + 13.5867i −0.887632 + 0.711159i
\(366\) 0 0
\(367\) −6.46940 + 6.46940i −0.337700 + 0.337700i −0.855501 0.517801i \(-0.826751\pi\)
0.517801 + 0.855501i \(0.326751\pi\)
\(368\) 0 0
\(369\) 6.42077i 0.334252i
\(370\) 0 0
\(371\) 2.08915 + 2.08915i 0.108463 + 0.108463i
\(372\) 0 0
\(373\) −16.7831 −0.868995 −0.434497 0.900673i \(-0.643074\pi\)
−0.434497 + 0.900673i \(0.643074\pi\)
\(374\) 0 0
\(375\) −2.50818 + 7.32736i −0.129522 + 0.378383i
\(376\) 0 0
\(377\) −15.5818 + 15.5818i −0.802502 + 0.802502i
\(378\) 0 0
\(379\) −7.31046 7.31046i −0.375513 0.375513i 0.493967 0.869480i \(-0.335546\pi\)
−0.869480 + 0.493967i \(0.835546\pi\)
\(380\) 0 0
\(381\) 7.30966 7.30966i 0.374485 0.374485i
\(382\) 0 0
\(383\) −5.31492 5.31492i −0.271580 0.271580i 0.558156 0.829736i \(-0.311509\pi\)
−0.829736 + 0.558156i \(0.811509\pi\)
\(384\) 0 0
\(385\) 0.142345 1.28960i 0.00725457 0.0657242i
\(386\) 0 0
\(387\) 10.8551i 0.551796i
\(388\) 0 0
\(389\) 1.28845 1.28845i 0.0653271 0.0653271i −0.673688 0.739016i \(-0.735291\pi\)
0.739016 + 0.673688i \(0.235291\pi\)
\(390\) 0 0
\(391\) 2.54526 0.128719
\(392\) 0 0
\(393\) −0.589160 0.589160i −0.0297192 0.0297192i
\(394\) 0 0
\(395\) −2.49382 + 22.5933i −0.125478 + 1.13679i
\(396\) 0 0
\(397\) 9.53832 0.478715 0.239357 0.970932i \(-0.423063\pi\)
0.239357 + 0.970932i \(0.423063\pi\)
\(398\) 0 0
\(399\) 2.56175 0.128248
\(400\) 0 0
\(401\) −24.6103 −1.22898 −0.614491 0.788924i \(-0.710638\pi\)
−0.614491 + 0.788924i \(0.710638\pi\)
\(402\) 0 0
\(403\) −32.2697 −1.60747
\(404\) 0 0
\(405\) −1.20494 + 10.9164i −0.0598739 + 0.542440i
\(406\) 0 0
\(407\) 4.57061 + 4.57061i 0.226557 + 0.226557i
\(408\) 0 0
\(409\) 16.9457 0.837911 0.418955 0.908007i \(-0.362396\pi\)
0.418955 + 0.908007i \(0.362396\pi\)
\(410\) 0 0
\(411\) −3.81092 + 3.81092i −0.187979 + 0.187979i
\(412\) 0 0
\(413\) 5.04594i 0.248294i
\(414\) 0 0
\(415\) −1.75475 + 15.8975i −0.0861373 + 0.780378i
\(416\) 0 0
\(417\) −2.10250 2.10250i −0.102960 0.102960i
\(418\) 0 0
\(419\) −6.56956 + 6.56956i −0.320944 + 0.320944i −0.849129 0.528185i \(-0.822873\pi\)
0.528185 + 0.849129i \(0.322873\pi\)
\(420\) 0 0
\(421\) 13.8805 + 13.8805i 0.676493 + 0.676493i 0.959205 0.282712i \(-0.0912341\pi\)
−0.282712 + 0.959205i \(0.591234\pi\)
\(422\) 0 0
\(423\) −11.5164 + 11.5164i −0.559946 + 0.559946i
\(424\) 0 0
\(425\) −1.56164 2.46051i −0.0757507 0.119352i
\(426\) 0 0
\(427\) −3.31201 −0.160279
\(428\) 0 0
\(429\) 2.15295 + 2.15295i 0.103946 + 0.103946i
\(430\) 0 0
\(431\) 12.3740i 0.596035i −0.954560 0.298017i \(-0.903675\pi\)
0.954560 0.298017i \(-0.0963254\pi\)
\(432\) 0 0
\(433\) −0.145326 + 0.145326i −0.00698392 + 0.00698392i −0.710590 0.703606i \(-0.751572\pi\)
0.703606 + 0.710590i \(0.251572\pi\)
\(434\) 0 0
\(435\) 7.23082 5.79324i 0.346691 0.277765i
\(436\) 0 0
\(437\) 33.2084i 1.58857i
\(438\) 0 0
\(439\) 3.65842i 0.174607i 0.996182 + 0.0873035i \(0.0278250\pi\)
−0.996182 + 0.0873035i \(0.972175\pi\)
\(440\) 0 0
\(441\) 17.0450i 0.811669i
\(442\) 0 0
\(443\) 3.94027i 0.187208i 0.995610 + 0.0936039i \(0.0298387\pi\)
−0.995610 + 0.0936039i \(0.970161\pi\)
\(444\) 0 0
\(445\) 0.272195 2.46601i 0.0129033 0.116900i
\(446\) 0 0
\(447\) 7.72864 7.72864i 0.365552 0.365552i
\(448\) 0 0
\(449\) 38.0014i 1.79340i 0.442642 + 0.896698i \(0.354041\pi\)
−0.442642 + 0.896698i \(0.645959\pi\)
\(450\) 0 0
\(451\) 2.14949 + 2.14949i 0.101215 + 0.101215i
\(452\) 0 0
\(453\) 2.20466 0.103584
\(454\) 0 0
\(455\) −2.50476 3.12631i −0.117425 0.146564i
\(456\) 0 0
\(457\) −18.1142 + 18.1142i −0.847348 + 0.847348i −0.989801 0.142454i \(-0.954501\pi\)
0.142454 + 0.989801i \(0.454501\pi\)
\(458\) 0 0
\(459\) 1.57596 + 1.57596i 0.0735595 + 0.0735595i
\(460\) 0 0
\(461\) 12.4144 12.4144i 0.578197 0.578197i −0.356209 0.934406i \(-0.615931\pi\)
0.934406 + 0.356209i \(0.115931\pi\)
\(462\) 0 0
\(463\) −8.56578 8.56578i −0.398085 0.398085i 0.479472 0.877557i \(-0.340828\pi\)
−0.877557 + 0.479472i \(0.840828\pi\)
\(464\) 0 0
\(465\) 13.4864 + 1.48861i 0.625416 + 0.0690327i
\(466\) 0 0
\(467\) 34.3465i 1.58937i 0.607023 + 0.794684i \(0.292364\pi\)
−0.607023 + 0.794684i \(0.707636\pi\)
\(468\) 0 0
\(469\) 4.93889 4.93889i 0.228057 0.228057i
\(470\) 0 0
\(471\) 4.88677 0.225170
\(472\) 0 0
\(473\) −3.63397 3.63397i −0.167090 0.167090i
\(474\) 0 0
\(475\) 32.1027 20.3749i 1.47297 0.934866i
\(476\) 0 0
\(477\) −15.3108 −0.701034
\(478\) 0 0
\(479\) −23.4504 −1.07148 −0.535738 0.844384i \(-0.679966\pi\)
−0.535738 + 0.844384i \(0.679966\pi\)
\(480\) 0 0
\(481\) 19.9576 0.909988
\(482\) 0 0
\(483\) −1.47109 −0.0669370
\(484\) 0 0
\(485\) −17.6681 + 14.1555i −0.802269 + 0.642767i
\(486\) 0 0
\(487\) 5.31215 + 5.31215i 0.240716 + 0.240716i 0.817146 0.576430i \(-0.195555\pi\)
−0.576430 + 0.817146i \(0.695555\pi\)
\(488\) 0 0
\(489\) −11.0978 −0.501859
\(490\) 0 0
\(491\) 3.71980 3.71980i 0.167872 0.167872i −0.618171 0.786044i \(-0.712126\pi\)
0.786044 + 0.618171i \(0.212126\pi\)
\(492\) 0 0
\(493\) 3.48642i 0.157021i
\(494\) 0 0
\(495\) 4.20398 + 5.24719i 0.188955 + 0.235844i
\(496\) 0 0
\(497\) 1.02338 + 1.02338i 0.0459050 + 0.0459050i
\(498\) 0 0
\(499\) 13.6065 13.6065i 0.609111 0.609111i −0.333603 0.942714i \(-0.608264\pi\)
0.942714 + 0.333603i \(0.108264\pi\)
\(500\) 0 0
\(501\) −11.5006 11.5006i −0.513810 0.513810i
\(502\) 0 0
\(503\) 9.31208 9.31208i 0.415205 0.415205i −0.468342 0.883547i \(-0.655148\pi\)
0.883547 + 0.468342i \(0.155148\pi\)
\(504\) 0 0
\(505\) −2.35288 + 1.88509i −0.104702 + 0.0838856i
\(506\) 0 0
\(507\) 0.395636 0.0175708
\(508\) 0 0
\(509\) −7.94836 7.94836i −0.352305 0.352305i 0.508662 0.860966i \(-0.330140\pi\)
−0.860966 + 0.508662i \(0.830140\pi\)
\(510\) 0 0
\(511\) 4.72585i 0.209059i
\(512\) 0 0
\(513\) −20.5618 + 20.5618i −0.907824 + 0.907824i
\(514\) 0 0
\(515\) −18.9702 23.6776i −0.835926 1.04336i
\(516\) 0 0
\(517\) 7.71069i 0.339116i
\(518\) 0 0
\(519\) 10.3878i 0.455972i
\(520\) 0 0
\(521\) 29.3979i 1.28795i 0.765048 + 0.643974i \(0.222715\pi\)
−0.765048 + 0.643974i \(0.777285\pi\)
\(522\) 0 0
\(523\) 19.5121i 0.853205i −0.904439 0.426602i \(-0.859710\pi\)
0.904439 0.426602i \(-0.140290\pi\)
\(524\) 0 0
\(525\) 0.902587 + 1.42211i 0.0393921 + 0.0620660i
\(526\) 0 0
\(527\) −3.61018 + 3.61018i −0.157262 + 0.157262i
\(528\) 0 0
\(529\) 3.92999i 0.170869i
\(530\) 0 0
\(531\) 18.4902 + 18.4902i 0.802406 + 0.802406i
\(532\) 0 0
\(533\) 9.38575 0.406542
\(534\) 0 0
\(535\) −1.29581 + 11.7396i −0.0560227 + 0.507549i
\(536\) 0 0
\(537\) 6.86692 6.86692i 0.296329 0.296329i
\(538\) 0 0
\(539\) 5.70618 + 5.70618i 0.245783 + 0.245783i
\(540\) 0 0
\(541\) 8.47183 8.47183i 0.364232 0.364232i −0.501136 0.865369i \(-0.667084\pi\)
0.865369 + 0.501136i \(0.167084\pi\)
\(542\) 0 0
\(543\) −0.720526 0.720526i −0.0309207 0.0309207i
\(544\) 0 0
\(545\) 3.80006 3.04456i 0.162777 0.130415i
\(546\) 0 0
\(547\) 9.97988i 0.426709i −0.976975 0.213355i \(-0.931561\pi\)
0.976975 0.213355i \(-0.0684389\pi\)
\(548\) 0 0
\(549\) 12.1364 12.1364i 0.517971 0.517971i
\(550\) 0 0
\(551\) −45.4879 −1.93785
\(552\) 0 0
\(553\) 3.49559 + 3.49559i 0.148648 + 0.148648i
\(554\) 0 0
\(555\) −8.34081 0.920650i −0.354048 0.0390794i
\(556\) 0 0
\(557\) 13.4866 0.571445 0.285722 0.958312i \(-0.407766\pi\)
0.285722 + 0.958312i \(0.407766\pi\)
\(558\) 0 0
\(559\) −15.8678 −0.671135
\(560\) 0 0
\(561\) 0.481724 0.0203384
\(562\) 0 0
\(563\) 20.3451 0.857445 0.428723 0.903436i \(-0.358964\pi\)
0.428723 + 0.903436i \(0.358964\pi\)
\(564\) 0 0
\(565\) −5.92493 7.39519i −0.249264 0.311118i
\(566\) 0 0
\(567\) 1.68896 + 1.68896i 0.0709298 + 0.0709298i
\(568\) 0 0
\(569\) 17.1460 0.718797 0.359399 0.933184i \(-0.382982\pi\)
0.359399 + 0.933184i \(0.382982\pi\)
\(570\) 0 0
\(571\) −6.24329 + 6.24329i −0.261274 + 0.261274i −0.825571 0.564298i \(-0.809147\pi\)
0.564298 + 0.825571i \(0.309147\pi\)
\(572\) 0 0
\(573\) 2.13645i 0.0892516i
\(574\) 0 0
\(575\) −18.4351 + 11.7004i −0.768795 + 0.487939i
\(576\) 0 0
\(577\) −10.0373 10.0373i −0.417859 0.417859i 0.466606 0.884465i \(-0.345477\pi\)
−0.884465 + 0.466606i \(0.845477\pi\)
\(578\) 0 0
\(579\) 8.37596 8.37596i 0.348093 0.348093i
\(580\) 0 0
\(581\) 2.45963 + 2.45963i 0.102043 + 0.102043i
\(582\) 0 0
\(583\) −5.12561 + 5.12561i −0.212281 + 0.212281i
\(584\) 0 0
\(585\) 20.6343 + 2.27759i 0.853124 + 0.0941669i
\(586\) 0 0
\(587\) −30.6857 −1.26654 −0.633268 0.773933i \(-0.718287\pi\)
−0.633268 + 0.773933i \(0.718287\pi\)
\(588\) 0 0
\(589\) −47.1025 47.1025i −1.94083 1.94083i
\(590\) 0 0
\(591\) 9.01817i 0.370958i
\(592\) 0 0
\(593\) −2.10671 + 2.10671i −0.0865123 + 0.0865123i −0.749039 0.662526i \(-0.769484\pi\)
0.662526 + 0.749039i \(0.269484\pi\)
\(594\) 0 0
\(595\) −0.629976 0.0695360i −0.0258265 0.00285070i
\(596\) 0 0
\(597\) 7.36210i 0.301311i
\(598\) 0 0
\(599\) 32.1322i 1.31289i 0.754375 + 0.656444i \(0.227940\pi\)
−0.754375 + 0.656444i \(0.772060\pi\)
\(600\) 0 0
\(601\) 14.9811i 0.611091i −0.952177 0.305546i \(-0.901161\pi\)
0.952177 0.305546i \(-0.0988388\pi\)
\(602\) 0 0
\(603\) 36.1959i 1.47401i
\(604\) 0 0
\(605\) −21.2843 2.34934i −0.865330 0.0955141i
\(606\) 0 0
\(607\) 27.3357 27.3357i 1.10952 1.10952i 0.116310 0.993213i \(-0.462893\pi\)
0.993213 0.116310i \(-0.0371067\pi\)
\(608\) 0 0
\(609\) 2.01506i 0.0816544i
\(610\) 0 0
\(611\) 16.8344 + 16.8344i 0.681047 + 0.681047i
\(612\) 0 0
\(613\) −48.3829 −1.95417 −0.977083 0.212859i \(-0.931723\pi\)
−0.977083 + 0.212859i \(0.931723\pi\)
\(614\) 0 0
\(615\) −3.92255 0.432967i −0.158173 0.0174589i
\(616\) 0 0
\(617\) 31.1565 31.1565i 1.25432 1.25432i 0.300549 0.953766i \(-0.402830\pi\)
0.953766 0.300549i \(-0.0971699\pi\)
\(618\) 0 0
\(619\) 0.198272 + 0.198272i 0.00796922 + 0.00796922i 0.711080 0.703111i \(-0.248206\pi\)
−0.703111 + 0.711080i \(0.748206\pi\)
\(620\) 0 0
\(621\) 11.8077 11.8077i 0.473825 0.473825i
\(622\) 0 0
\(623\) −0.381537 0.381537i −0.0152859 0.0152859i
\(624\) 0 0
\(625\) 22.6216 + 10.6425i 0.904864 + 0.425700i
\(626\) 0 0
\(627\) 6.28512i 0.251003i
\(628\) 0 0
\(629\) 2.23276 2.23276i 0.0890259 0.0890259i
\(630\) 0 0
\(631\) 32.3314 1.28709 0.643547 0.765407i \(-0.277462\pi\)
0.643547 + 0.765407i \(0.277462\pi\)
\(632\) 0 0
\(633\) 7.95239 + 7.95239i 0.316079 + 0.316079i
\(634\) 0 0
\(635\) −20.8644 26.0418i −0.827977 1.03344i
\(636\) 0 0
\(637\) 24.9161 0.987212
\(638\) 0 0
\(639\) −7.50010 −0.296700
\(640\) 0 0
\(641\) −46.5662 −1.83926 −0.919628 0.392790i \(-0.871510\pi\)
−0.919628 + 0.392790i \(0.871510\pi\)
\(642\) 0 0
\(643\) 40.2247 1.58631 0.793154 0.609021i \(-0.208437\pi\)
0.793154 + 0.609021i \(0.208437\pi\)
\(644\) 0 0
\(645\) 6.63156 + 0.731984i 0.261117 + 0.0288218i
\(646\) 0 0
\(647\) 10.7938 + 10.7938i 0.424349 + 0.424349i 0.886698 0.462349i \(-0.152993\pi\)
−0.462349 + 0.886698i \(0.652993\pi\)
\(648\) 0 0
\(649\) 12.3799 0.485956
\(650\) 0 0
\(651\) 2.08659 2.08659i 0.0817799 0.0817799i
\(652\) 0 0
\(653\) 3.92443i 0.153575i 0.997047 + 0.0767875i \(0.0244663\pi\)
−0.997047 + 0.0767875i \(0.975534\pi\)
\(654\) 0 0
\(655\) −2.09898 + 1.68167i −0.0820138 + 0.0657084i
\(656\) 0 0
\(657\) −17.3173 17.3173i −0.675610 0.675610i
\(658\) 0 0
\(659\) 34.6142 34.6142i 1.34838 1.34838i 0.460952 0.887425i \(-0.347508\pi\)
0.887425 0.460952i \(-0.152492\pi\)
\(660\) 0 0
\(661\) 21.7641 + 21.7641i 0.846525 + 0.846525i 0.989698 0.143173i \(-0.0457304\pi\)
−0.143173 + 0.989698i \(0.545730\pi\)
\(662\) 0 0
\(663\) 1.05173 1.05173i 0.0408456 0.0408456i
\(664\) 0 0
\(665\) 0.907246 8.21938i 0.0351815 0.318734i
\(666\) 0 0
\(667\) 26.1216 1.01143
\(668\) 0 0
\(669\) −1.50917 1.50917i −0.0583477 0.0583477i
\(670\) 0 0
\(671\) 8.12584i 0.313695i
\(672\) 0 0
\(673\) 29.4450 29.4450i 1.13502 1.13502i 0.145691 0.989330i \(-0.453459\pi\)
0.989330 0.145691i \(-0.0465405\pi\)
\(674\) 0 0
\(675\) −18.6591 4.16995i −0.718189 0.160501i
\(676\) 0 0
\(677\) 34.7351i 1.33498i −0.744619 0.667490i \(-0.767369\pi\)
0.744619 0.667490i \(-0.232631\pi\)
\(678\) 0 0
\(679\) 4.92370i 0.188954i
\(680\) 0 0
\(681\) 6.45828i 0.247482i
\(682\) 0 0
\(683\) 22.2693i 0.852110i −0.904697 0.426055i \(-0.859903\pi\)
0.904697 0.426055i \(-0.140097\pi\)
\(684\) 0 0
\(685\) 10.8777 + 13.5770i 0.415616 + 0.518750i
\(686\) 0 0
\(687\) −1.88597 + 1.88597i −0.0719543 + 0.0719543i
\(688\) 0 0
\(689\) 22.3810i 0.852650i
\(690\) 0 0
\(691\) −15.7043 15.7043i −0.597420 0.597420i 0.342205 0.939625i \(-0.388826\pi\)
−0.939625 + 0.342205i \(0.888826\pi\)
\(692\) 0 0
\(693\) 1.46227 0.0555470
\(694\) 0 0
\(695\) −7.49048 + 6.00128i −0.284130 + 0.227641i
\(696\) 0 0
\(697\) 1.05003 1.05003i 0.0397728 0.0397728i
\(698\) 0 0
\(699\) 8.58253 + 8.58253i 0.324621 + 0.324621i
\(700\) 0 0
\(701\) −21.5588 + 21.5588i −0.814266 + 0.814266i −0.985270 0.171004i \(-0.945299\pi\)
0.171004 + 0.985270i \(0.445299\pi\)
\(702\) 0 0
\(703\) 29.1311 + 29.1311i 1.09870 + 1.09870i
\(704\) 0 0
\(705\) −6.25897 7.81212i −0.235726 0.294221i
\(706\) 0 0
\(707\) 0.655691i 0.0246598i
\(708\) 0 0
\(709\) 2.96687 2.96687i 0.111423 0.111423i −0.649197 0.760620i \(-0.724895\pi\)
0.760620 + 0.649197i \(0.224895\pi\)
\(710\) 0 0
\(711\) −25.6183 −0.960760
\(712\) 0 0
\(713\) 27.0488 + 27.0488i 1.01299 + 1.01299i
\(714\) 0 0
\(715\) 7.67023 6.14529i 0.286850 0.229821i
\(716\) 0 0
\(717\) −17.4688 −0.652385
\(718\) 0 0
\(719\) −25.8357 −0.963509 −0.481755 0.876306i \(-0.660000\pi\)
−0.481755 + 0.876306i \(0.660000\pi\)
\(720\) 0 0
\(721\) −6.59839 −0.245737
\(722\) 0 0
\(723\) −8.32763 −0.309708
\(724\) 0 0
\(725\) −16.0268 25.2518i −0.595222 0.937829i
\(726\) 0 0
\(727\) −28.9620 28.9620i −1.07414 1.07414i −0.997022 0.0771198i \(-0.975428\pi\)
−0.0771198 0.997022i \(-0.524572\pi\)
\(728\) 0 0
\(729\) −4.43146 −0.164128
\(730\) 0 0
\(731\) −1.77521 + 1.77521i −0.0656584 + 0.0656584i
\(732\) 0 0
\(733\) 21.1673i 0.781832i −0.920426 0.390916i \(-0.872158\pi\)
0.920426 0.390916i \(-0.127842\pi\)
\(734\) 0 0
\(735\) −10.4131 1.14939i −0.384093 0.0423957i
\(736\) 0 0
\(737\) 12.1173 + 12.1173i 0.446347 + 0.446347i
\(738\) 0 0
\(739\) 2.23302 2.23302i 0.0821431 0.0821431i −0.664841 0.746985i \(-0.731501\pi\)
0.746985 + 0.664841i \(0.231501\pi\)
\(740\) 0 0
\(741\) 13.7220 + 13.7220i 0.504091 + 0.504091i
\(742\) 0 0
\(743\) 18.4514 18.4514i 0.676915 0.676915i −0.282386 0.959301i \(-0.591126\pi\)
0.959301 + 0.282386i \(0.0911258\pi\)
\(744\) 0 0
\(745\) −22.0603 27.5345i −0.808226 1.00879i
\(746\) 0 0
\(747\) −18.0260 −0.659538
\(748\) 0 0
\(749\) 1.81634 + 1.81634i 0.0663675 + 0.0663675i
\(750\) 0 0
\(751\) 42.4243i 1.54808i −0.633134 0.774042i \(-0.718232\pi\)
0.633134 0.774042i \(-0.281768\pi\)
\(752\) 0 0
\(753\) 5.18780 5.18780i 0.189054 0.189054i
\(754\) 0 0
\(755\) 0.780782 7.07365i 0.0284156 0.257437i
\(756\) 0 0
\(757\) 19.7595i 0.718170i −0.933305 0.359085i \(-0.883089\pi\)
0.933305 0.359085i \(-0.116911\pi\)
\(758\) 0 0
\(759\) 3.60925i 0.131007i
\(760\) 0 0
\(761\) 48.0351i 1.74127i 0.491928 + 0.870636i \(0.336292\pi\)
−0.491928 + 0.870636i \(0.663708\pi\)
\(762\) 0 0
\(763\) 1.05899i 0.0383379i
\(764\) 0 0
\(765\) 2.56327 2.05366i 0.0926753 0.0742502i
\(766\) 0 0
\(767\) 27.0286 27.0286i 0.975946 0.975946i
\(768\) 0 0
\(769\) 24.0184i 0.866127i 0.901363 + 0.433064i \(0.142567\pi\)
−0.901363 + 0.433064i \(0.857433\pi\)
\(770\) 0 0
\(771\) 6.98319 + 6.98319i 0.251493 + 0.251493i
\(772\) 0 0
\(773\) 22.4630 0.807937 0.403969 0.914773i \(-0.367630\pi\)
0.403969 + 0.914773i \(0.367630\pi\)
\(774\) 0 0
\(775\) 9.55244 42.7439i 0.343134 1.53541i
\(776\) 0 0
\(777\) −1.29048 + 1.29048i −0.0462956 + 0.0462956i
\(778\) 0 0
\(779\) 13.6999 + 13.6999i 0.490850 + 0.490850i
\(780\) 0 0
\(781\) −2.51081 + 2.51081i −0.0898440 + 0.0898440i
\(782\) 0 0
\(783\) 16.1738 + 16.1738i 0.578005 + 0.578005i
\(784\) 0 0
\(785\) 1.73065 15.6792i 0.0617697 0.559615i
\(786\) 0 0
\(787\) 26.1054i 0.930556i −0.885165 0.465278i \(-0.845954\pi\)
0.885165 0.465278i \(-0.154046\pi\)
\(788\) 0 0
\(789\) −2.65724 + 2.65724i −0.0946001 + 0.0946001i
\(790\) 0 0
\(791\) −2.06087 −0.0732759
\(792\) 0 0
\(793\) −17.7408 17.7408i −0.629994 0.629994i
\(794\) 0 0
\(795\) 1.03244 9.35363i 0.0366170 0.331739i
\(796\) 0 0
\(797\) 43.4888 1.54045 0.770227 0.637770i \(-0.220143\pi\)
0.770227 + 0.637770i \(0.220143\pi\)