Defining parameters
Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 320.s (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(320, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 28 | 84 |
Cusp forms | 80 | 20 | 60 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(320, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
320.2.s.a | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(4\) | \(-4\) | \(6\) | \(q+2 q^{3}+(i-2)q^{5}+(3 i+3)q^{7}+\cdots\) |
320.2.s.b | $18$ | $2.555$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(-2\) | \(q-\beta _{1}q^{3}+\beta _{7}q^{5}+\beta _{10}q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(320, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)