Defining parameters
| Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 320.q (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(320, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 112 | 28 | 84 |
| Cusp forms | 80 | 20 | 60 |
| Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(320, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 320.2.q.a | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(2\) | \(0\) | \(q+(-i-1)q^{3}+(2 i+1)q^{5}-i q^{9}+\cdots\) |
| 320.2.q.b | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(4\) | \(0\) | \(q+(i+1)q^{3}+(i+2)q^{5}-i q^{9}+(3 i+3)q^{11}+\cdots\) |
| 320.2.q.c | $16$ | $2.555$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{11}q^{3}+(-1-\beta _{6}-\beta _{10})q^{5}+(\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(320, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)