# Properties

 Label 320.2.o.e Level $320$ Weight $2$ Character orbit 320.o Analytic conductor $2.555$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$320 = 2^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 320.o (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.55521286468$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(i)$$ Coefficient field: 8.0.49787136.1 Defining polynomial: $$x^{8} + 3 x^{6} + 5 x^{4} + 12 x^{2} + 16$$ Coefficient ring: $$\Z[a_1, \ldots, a_{9}]$$ Coefficient ring index: $$2^{6}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\beta_{2} - \beta_{7} ) q^{3} + \beta_{7} q^{5} -\beta_{6} q^{7} + ( -3 \beta_{1} - \beta_{5} - \beta_{6} ) q^{9} +O(q^{10})$$ $$q + ( -\beta_{2} - \beta_{7} ) q^{3} + \beta_{7} q^{5} -\beta_{6} q^{7} + ( -3 \beta_{1} - \beta_{5} - \beta_{6} ) q^{9} + ( -\beta_{2} + \beta_{3} + \beta_{7} ) q^{11} + ( \beta_{2} + \beta_{4} ) q^{13} + ( 2 + 4 \beta_{1} + \beta_{5} ) q^{15} + ( 3 + 3 \beta_{1} ) q^{17} -2 \beta_{4} q^{19} + ( -\beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{7} ) q^{21} + ( 2 + 2 \beta_{1} + \beta_{5} ) q^{23} + ( -1 - 2 \beta_{1} - \beta_{5} + \beta_{6} ) q^{25} + ( 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} ) q^{27} + ( 2 \beta_{3} + 2 \beta_{7} ) q^{29} + ( -4 \beta_{1} - \beta_{5} - \beta_{6} ) q^{31} + ( -2 + 2 \beta_{1} ) q^{33} + ( -\beta_{3} - 4 \beta_{4} - 2 \beta_{7} ) q^{35} + ( 3 \beta_{2} - 3 \beta_{4} ) q^{37} + ( -4 - \beta_{5} + \beta_{6} ) q^{39} + ( -2 + \beta_{5} - \beta_{6} ) q^{41} + ( -\beta_{2} + 4 \beta_{4} + 3 \beta_{7} ) q^{43} + ( -5 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} - 3 \beta_{7} ) q^{45} + ( -2 + 2 \beta_{1} + \beta_{6} ) q^{47} + ( -3 \beta_{1} + \beta_{5} + \beta_{6} ) q^{49} + ( -3 \beta_{2} - 3 \beta_{3} - 3 \beta_{7} ) q^{51} + ( \beta_{2} - 2 \beta_{3} + \beta_{4} ) q^{53} + ( 4 - 2 \beta_{1} - \beta_{5} + \beta_{6} ) q^{55} + ( 4 + 4 \beta_{1} + 2 \beta_{5} ) q^{57} + ( 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{7} ) q^{59} + ( 3 \beta_{2} - 3 \beta_{3} + 4 \beta_{4} + 3 \beta_{7} ) q^{61} + ( -10 - 10 \beta_{1} - \beta_{5} ) q^{63} + ( 1 - 3 \beta_{1} + \beta_{5} - \beta_{6} ) q^{65} + ( 4 \beta_{2} - 3 \beta_{3} + 4 \beta_{4} ) q^{67} + ( -5 \beta_{2} - 3 \beta_{3} - 3 \beta_{7} ) q^{69} + ( -8 \beta_{1} + \beta_{5} + \beta_{6} ) q^{71} + ( -5 + 5 \beta_{1} + 2 \beta_{6} ) q^{73} + ( 5 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{7} ) q^{75} + ( 2 \beta_{2} - 6 \beta_{4} - 4 \beta_{7} ) q^{77} + 12 q^{79} + ( -11 - \beta_{5} + \beta_{6} ) q^{81} + ( -\beta_{2} - 2 \beta_{4} - 3 \beta_{7} ) q^{83} + ( 3 \beta_{3} - 3 \beta_{4} + 3 \beta_{7} ) q^{85} + ( -8 + 8 \beta_{1} + 2 \beta_{6} ) q^{87} + ( 8 \beta_{1} + 2 \beta_{5} + 2 \beta_{6} ) q^{89} + ( -\beta_{2} + 3 \beta_{3} + 3 \beta_{7} ) q^{91} + ( 2 \beta_{2} + 6 \beta_{3} + 2 \beta_{4} ) q^{93} + ( -4 + 2 \beta_{1} - 2 \beta_{5} ) q^{95} + ( -5 - 5 \beta_{1} - 2 \beta_{5} ) q^{97} + ( -\beta_{2} + \beta_{3} - 6 \beta_{4} - \beta_{7} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q - 4 q^{7} + O(q^{10})$$ $$8 q - 4 q^{7} + 12 q^{15} + 24 q^{17} + 12 q^{23} - 16 q^{33} - 24 q^{39} - 24 q^{41} - 12 q^{47} + 40 q^{55} + 24 q^{57} - 76 q^{63} - 32 q^{73} + 96 q^{79} - 80 q^{81} - 56 q^{87} - 24 q^{95} - 32 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} + 3 x^{6} + 5 x^{4} + 12 x^{2} + 16$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-3 \nu^{7} - 5 \nu^{5} + 5 \nu^{3} - 16 \nu$$$$)/40$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{7} - \nu^{5} + \nu^{3} + 8 \nu$$$$)/8$$ $$\beta_{3}$$ $$=$$ $$($$$$-5 \nu^{7} - 2 \nu^{6} - 15 \nu^{5} + 10 \nu^{4} - 25 \nu^{3} + 30 \nu^{2} - 20 \nu + 16$$$$)/40$$ $$\beta_{4}$$ $$=$$ $$($$$$3 \nu^{6} + 5 \nu^{4} + 15 \nu^{2} + 26$$$$)/10$$ $$\beta_{5}$$ $$=$$ $$($$$$\nu^{7} - 2 \nu^{6} + 3 \nu^{5} - 6 \nu^{4} + 5 \nu^{3} - 2 \nu^{2} + 20 \nu - 16$$$$)/8$$ $$\beta_{6}$$ $$=$$ $$($$$$\nu^{7} + 2 \nu^{6} + 3 \nu^{5} + 6 \nu^{4} + 5 \nu^{3} + 2 \nu^{2} + 20 \nu + 16$$$$)/8$$ $$\beta_{7}$$ $$=$$ $$($$$$-5 \nu^{7} + \nu^{6} - 5 \nu^{5} - 5 \nu^{4} - 15 \nu^{3} - 15 \nu^{2} - 30 \nu - 8$$$$)/20$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{7} + \beta_{6} + \beta_{5} + \beta_{3} + \beta_{2}$$$$)/4$$ $$\nu^{2}$$ $$=$$ $$($$$$-\beta_{7} - \beta_{6} + \beta_{5} + 2 \beta_{4} + \beta_{3} - \beta_{2} - 2$$$$)/4$$ $$\nu^{3}$$ $$=$$ $$($$$$-\beta_{7} - \beta_{3} + 5 \beta_{1}$$$$)/2$$ $$\nu^{4}$$ $$=$$ $$($$$$-3 \beta_{7} + 3 \beta_{6} - 3 \beta_{5} - 4 \beta_{4} + 3 \beta_{3} - 3 \beta_{2} - 4$$$$)/4$$ $$\nu^{5}$$ $$=$$ $$($$$$-\beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} - 11 \beta_{2} - 10 \beta_{1}$$$$)/4$$ $$\nu^{6}$$ $$=$$ $$($$$$5 \beta_{7} + 5 \beta_{4} - 5 \beta_{3} + 5 \beta_{2} - 9$$$$)/2$$ $$\nu^{7}$$ $$=$$ $$($$$$-7 \beta_{7} - 7 \beta_{6} - 7 \beta_{5} - 7 \beta_{3} + 13 \beta_{2} - 20 \beta_{1}$$$$)/4$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/320\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$257$$ $$261$$ $$\chi(n)$$ $$-1$$ $$\beta_{1}$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
223.1
 1.09445 − 0.895644i 0.228425 + 1.39564i −0.228425 + 1.39564i −1.09445 − 0.895644i 1.09445 + 0.895644i 0.228425 − 1.39564i −0.228425 − 1.39564i −1.09445 + 0.895644i
0 −2.18890 2.18890i 0 0.456850 + 2.18890i 0 1.79129 + 1.79129i 0 6.58258i 0
223.2 0 −0.456850 0.456850i 0 2.18890 + 0.456850i 0 −2.79129 2.79129i 0 2.58258i 0
223.3 0 0.456850 + 0.456850i 0 −2.18890 0.456850i 0 −2.79129 2.79129i 0 2.58258i 0
223.4 0 2.18890 + 2.18890i 0 −0.456850 2.18890i 0 1.79129 + 1.79129i 0 6.58258i 0
287.1 0 −2.18890 + 2.18890i 0 0.456850 2.18890i 0 1.79129 1.79129i 0 6.58258i 0
287.2 0 −0.456850 + 0.456850i 0 2.18890 0.456850i 0 −2.79129 + 2.79129i 0 2.58258i 0
287.3 0 0.456850 0.456850i 0 −2.18890 + 0.456850i 0 −2.79129 + 2.79129i 0 2.58258i 0
287.4 0 2.18890 2.18890i 0 −0.456850 + 2.18890i 0 1.79129 1.79129i 0 6.58258i 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 287.4 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner
20.e even 4 1 inner
40.k even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.2.o.e 8
4.b odd 2 1 320.2.o.f yes 8
5.b even 2 1 1600.2.o.l 8
5.c odd 4 1 320.2.o.f yes 8
5.c odd 4 1 1600.2.o.e 8
8.b even 2 1 inner 320.2.o.e 8
8.d odd 2 1 320.2.o.f yes 8
16.e even 4 2 1280.2.n.p 8
16.f odd 4 2 1280.2.n.n 8
20.d odd 2 1 1600.2.o.e 8
20.e even 4 1 inner 320.2.o.e 8
20.e even 4 1 1600.2.o.l 8
40.e odd 2 1 1600.2.o.e 8
40.f even 2 1 1600.2.o.l 8
40.i odd 4 1 320.2.o.f yes 8
40.i odd 4 1 1600.2.o.e 8
40.k even 4 1 inner 320.2.o.e 8
40.k even 4 1 1600.2.o.l 8
80.i odd 4 1 1280.2.n.n 8
80.j even 4 1 1280.2.n.p 8
80.s even 4 1 1280.2.n.p 8
80.t odd 4 1 1280.2.n.n 8

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
320.2.o.e 8 1.a even 1 1 trivial
320.2.o.e 8 8.b even 2 1 inner
320.2.o.e 8 20.e even 4 1 inner
320.2.o.e 8 40.k even 4 1 inner
320.2.o.f yes 8 4.b odd 2 1
320.2.o.f yes 8 5.c odd 4 1
320.2.o.f yes 8 8.d odd 2 1
320.2.o.f yes 8 40.i odd 4 1
1280.2.n.n 8 16.f odd 4 2
1280.2.n.n 8 80.i odd 4 1
1280.2.n.n 8 80.t odd 4 1
1280.2.n.p 8 16.e even 4 2
1280.2.n.p 8 80.j even 4 1
1280.2.n.p 8 80.s even 4 1
1600.2.o.e 8 5.c odd 4 1
1600.2.o.e 8 20.d odd 2 1
1600.2.o.e 8 40.e odd 2 1
1600.2.o.e 8 40.i odd 4 1
1600.2.o.l 8 5.b even 2 1
1600.2.o.l 8 20.e even 4 1
1600.2.o.l 8 40.f even 2 1
1600.2.o.l 8 40.k even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(320, [\chi])$$:

 $$T_{3}^{8} + 92 T_{3}^{4} + 16$$ $$T_{7}^{4} + 2 T_{7}^{3} + 2 T_{7}^{2} - 20 T_{7} + 100$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{8}$$
$3$ $$16 + 92 T^{4} + T^{8}$$
$5$ $$625 - 34 T^{4} + T^{8}$$
$7$ $$( 100 - 20 T + 2 T^{2} + 2 T^{3} + T^{4} )^{2}$$
$11$ $$( 16 - 20 T^{2} + T^{4} )^{2}$$
$13$ $$( 36 + T^{4} )^{2}$$
$17$ $$( 18 - 6 T + T^{2} )^{4}$$
$19$ $$( 12 + T^{2} )^{4}$$
$23$ $$( 36 + 36 T + 18 T^{2} - 6 T^{3} + T^{4} )^{2}$$
$29$ $$( -28 + T^{2} )^{4}$$
$31$ $$( 144 + 60 T^{2} + T^{4} )^{2}$$
$37$ $$( 2916 + T^{4} )^{2}$$
$41$ $$( -12 + 6 T + T^{2} )^{4}$$
$43$ $$1296 + 18972 T^{4} + T^{8}$$
$47$ $$( 36 - 36 T + 18 T^{2} + 6 T^{3} + T^{4} )^{2}$$
$53$ $$( 196 + T^{4} )^{2}$$
$59$ $$( 28 + T^{2} )^{4}$$
$61$ $$( 3600 + 132 T^{2} + T^{4} )^{2}$$
$67$ $$1296 + 18972 T^{4} + T^{8}$$
$71$ $$( 3600 + 204 T^{2} + T^{4} )^{2}$$
$73$ $$( 100 - 160 T + 128 T^{2} + 16 T^{3} + T^{4} )^{2}$$
$79$ $$( -12 + T )^{8}$$
$83$ $$810000 + 2556 T^{4} + T^{8}$$
$89$ $$( 2304 + 240 T^{2} + T^{4} )^{2}$$
$97$ $$( 100 - 160 T + 128 T^{2} + 16 T^{3} + T^{4} )^{2}$$