Defining parameters
Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 320.o (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(320, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 24 | 96 |
Cusp forms | 72 | 24 | 48 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(320, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
320.2.o.a | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(-2\) | \(-2\) | \(q+(i-1)q^{3}+(-2 i-1)q^{5}+(i-1)q^{7}+\cdots\) |
320.2.o.b | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | \(q+(i-1)q^{3}+(2 i+1)q^{5}+(-i+1)q^{7}+\cdots\) |
320.2.o.c | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(-2\) | \(2\) | \(q+(-i+1)q^{3}+(-2 i-1)q^{5}+(-i+1)q^{7}+\cdots\) |
320.2.o.d | $2$ | $2.555$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | \(q+(-i+1)q^{3}+(2 i+1)q^{5}+(i-1)q^{7}+\cdots\) |
320.2.o.e | $8$ | $2.555$ | 8.0.49787136.1 | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+(-\beta _{2}-\beta _{7})q^{3}+\beta _{7}q^{5}-\beta _{6}q^{7}+\cdots\) |
320.2.o.f | $8$ | $2.555$ | 8.0.49787136.1 | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+(-\beta _{2}-\beta _{7})q^{3}-\beta _{7}q^{5}+\beta _{6}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(320, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)