Defining parameters
Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 320.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(320, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 8 | 52 |
Cusp forms | 36 | 8 | 28 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(320, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
320.2.d.a | $4$ | $2.555$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q+(-\beta_{2}+\beta_1)q^{3}-\beta_1 q^{5}+(\beta_{3}-3)q^{7}+\cdots\) |
320.2.d.b | $4$ | $2.555$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+(-\beta_{2}+\beta_1)q^{3}+\beta_1 q^{5}+(-\beta_{3}+3)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(320, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(320, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)