Newspace parameters
| Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 320.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(2.55521286468\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(i, \sqrt{5})\) |
|
|
|
| Defining polynomial: |
\( x^{4} + 3x^{2} + 1 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
| Coefficient ring index: | \( 2^{4} \) |
| Twist minimal: | no (minimal twist has level 160) |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 129.3 | ||
| Root | \(0.618034i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 320.129 |
| Dual form | 320.2.c.d.129.2 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).
| \(n\) | \(191\) | \(257\) | \(261\) |
| \(\chi(n)\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 1.23607i | 0.713644i | 0.934172 | + | 0.356822i | \(0.116140\pi\) | ||||
| −0.934172 | + | 0.356822i | \(0.883860\pi\) | |||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 2.23607 | 1.00000 | ||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | − 5.23607i | − 1.97905i | −0.144370 | − | 0.989524i | \(-0.546115\pi\) | ||||
| 0.144370 | − | 0.989524i | \(-0.453885\pi\) | |||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 1.47214 | 0.490712 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 2.76393i | 0.713644i | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 6.47214 | 1.41234 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 7.70820i | 1.60727i | 0.595121 | + | 0.803636i | \(0.297104\pi\) | ||||
| −0.595121 | + | 0.803636i | \(0.702896\pi\) | |||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 5.00000 | 1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 5.52786i | 1.06384i | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
| −0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | − 11.7082i | − 1.97905i | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 4.47214 | 0.698430 | 0.349215 | − | 0.937043i | \(-0.386448\pi\) | ||||
| 0.349215 | + | 0.937043i | \(0.386448\pi\) | |||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | − 6.76393i | − 1.03149i | −0.856742 | − | 0.515745i | \(-0.827515\pi\) | ||||
| 0.856742 | − | 0.515745i | \(-0.172485\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 3.29180 | 0.490712 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | − 0.291796i | − 0.0425628i | −0.999774 | − | 0.0212814i | \(-0.993225\pi\) | ||||
| 0.999774 | − | 0.0212814i | \(-0.00677460\pi\) | |||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | −20.4164 | −2.91663 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | −13.4164 | −1.71780 | −0.858898 | − | 0.512148i | \(-0.828850\pi\) | ||||
| −0.858898 | + | 0.512148i | \(0.828850\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | − 7.70820i | − 0.971142i | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 14.1803i | 1.73240i | 0.499694 | + | 0.866202i | \(0.333446\pi\) | ||||
| −0.499694 | + | 0.866202i | \(0.666554\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | −9.52786 | −1.14702 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 6.18034i | 0.713644i | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | −2.41641 | −0.268490 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 4.29180i | 0.471086i | 0.971864 | + | 0.235543i | \(0.0756868\pi\) | ||||
| −0.971864 | + | 0.235543i | \(0.924313\pi\) | |||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | − 7.41641i | − 0.795122i | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
| −0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
| 0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | − 2.18034i | − 0.214835i | −0.994214 | − | 0.107418i | \(-0.965742\pi\) | ||||
| 0.994214 | − | 0.107418i | \(-0.0342582\pi\) | |||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 14.4721 | 1.41234 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | − 19.7082i | − 1.90526i | −0.304125 | − | 0.952632i | \(-0.598364\pi\) | ||||
| 0.304125 | − | 0.952632i | \(-0.401636\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | −13.4164 | −1.28506 | −0.642529 | − | 0.766261i | \(-0.722115\pi\) | ||||
| −0.642529 | + | 0.766261i | \(0.722115\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 17.2361i | 1.60727i | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −11.0000 | −1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 5.52786i | 0.498431i | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 11.1803 | 1.00000 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 12.6525i | 1.12273i | 0.827570 | + | 0.561363i | \(0.189723\pi\) | ||||
| −0.827570 | + | 0.561363i | \(0.810277\pi\) | |||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 8.36068 | 0.736117 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 12.3607i | 1.06384i | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0.360680 | 0.0303747 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | −13.4164 | −1.11417 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | − 25.2361i | − 2.08144i | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 4.47214 | 0.366372 | 0.183186 | − | 0.983078i | \(-0.441359\pi\) | ||||
| 0.183186 | + | 0.983078i | \(0.441359\pi\) | |||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 40.3607 | 3.18087 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | − 24.6525i | − 1.93093i | −0.260531 | − | 0.965465i | \(-0.583898\pi\) | ||||
| 0.260531 | − | 0.965465i | \(-0.416102\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 23.7082i | 1.83460i | 0.398202 | + | 0.917298i | \(0.369634\pi\) | ||||
| −0.398202 | + | 0.917298i | \(0.630366\pi\) | |||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | 13.0000 | 1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | − 26.1803i | − 1.97905i | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
| 0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | − 16.5836i | − 1.22589i | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 28.9443 | 2.10539 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | −17.5279 | −1.23632 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 31.4164i | 2.20500i | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 10.0000 | 0.698430 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 11.3475i | 0.788707i | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | − 15.1246i | − 1.03149i | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 18.7639i | 1.25653i | 0.778001 | + | 0.628263i | \(0.216234\pi\) | ||||
| −0.778001 | + | 0.628263i | \(0.783766\pi\) | |||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 7.36068 | 0.490712 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 27.1246i | 1.80032i | 0.435556 | + | 0.900162i | \(0.356552\pi\) | ||||
| −0.435556 | + | 0.900162i | \(0.643448\pi\) | |||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
| −0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | − 0.652476i | − 0.0425628i | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | −13.4164 | −0.864227 | −0.432113 | − | 0.901819i | \(-0.642232\pi\) | ||||
| −0.432113 | + | 0.901819i | \(0.642232\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 13.5967i | 0.872232i | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | −45.6525 | −2.91663 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | −5.30495 | −0.336188 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | −8.83282 | −0.546738 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | − 31.1246i | − 1.91923i | −0.281324 | − | 0.959613i | \(-0.590774\pi\) | ||||
| 0.281324 | − | 0.959613i | \(-0.409226\pi\) | |||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | − 7.41641i | − 0.453877i | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | 22.3607 | 1.36335 | 0.681677 | − | 0.731653i | \(-0.261251\pi\) | ||||
| 0.681677 | + | 0.731653i | \(0.261251\pi\) | |||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | −31.3050 | −1.86750 | −0.933748 | − | 0.357930i | \(-0.883483\pi\) | ||||
| −0.933748 | + | 0.357930i | \(0.883483\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | − 9.81966i | − 0.583718i | −0.956461 | − | 0.291859i | \(-0.905726\pi\) | ||||
| 0.956461 | − | 0.291859i | \(-0.0942738\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | − 23.4164i | − 1.38223i | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 17.0000 | 1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | −35.4164 | −2.04137 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 22.2492i | 1.27818i | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | −30.0000 | −1.71780 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | − 21.5967i | − 1.23259i | −0.787515 | − | 0.616296i | \(-0.788633\pi\) | ||||
| 0.787515 | − | 0.616296i | \(-0.211367\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 2.69505 | 0.153316 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | − 17.2361i | − 0.971142i | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 24.3607 | 1.35968 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | − 16.5836i | − 0.917075i | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | −1.52786 | −0.0842339 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 31.7082i | 1.73240i | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 70.2492i | 3.79310i | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | −21.3050 | −1.14702 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | 3.12461i | 0.167738i | 0.996477 | + | 0.0838690i | \(0.0267277\pi\) | ||||
| −0.996477 | + | 0.0838690i | \(0.973272\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 26.0000 | 1.39175 | 0.695874 | − | 0.718164i | \(-0.255017\pi\) | ||||
| 0.695874 | + | 0.718164i | \(0.255017\pi\) | |||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −19.0000 | −1.00000 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | − 13.5967i | − 0.713644i | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | − 29.2361i | − 1.52611i | −0.646333 | − | 0.763055i | \(-0.723698\pi\) | ||||
| 0.646333 | − | 0.763055i | \(-0.276302\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 6.58359 | 0.342728 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 13.8197i | 0.713644i | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | −15.6393 | −0.801227 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | − 39.1246i | − 1.99917i | −0.0287325 | − | 0.999587i | \(-0.509147\pi\) | ||||
| 0.0287325 | − | 0.999587i | \(-0.490853\pi\) | |||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | − 9.95743i | − 0.506164i | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | −31.3050 | −1.58722 | −0.793612 | − | 0.608424i | \(-0.791802\pi\) | ||||
| −0.793612 | + | 0.608424i | \(0.791802\pi\) | |||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | 18.0000 | 0.898877 | 0.449439 | − | 0.893311i | \(-0.351624\pi\) | ||||
| 0.449439 | + | 0.893311i | \(0.351624\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | −5.40325 | −0.268490 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 40.2492 | 1.99020 | 0.995098 | − | 0.0988936i | \(-0.0315304\pi\) | ||||
| 0.995098 | + | 0.0988936i | \(0.0315304\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 9.59675i | 0.471086i | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 40.2492 | 1.96163 | 0.980814 | − | 0.194948i | \(-0.0624538\pi\) | ||||
| 0.980814 | + | 0.194948i | \(0.0624538\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | − 0.429563i | − 0.0208861i | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 70.2492i | 3.39960i | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | − 16.5836i | − 0.795122i | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | −30.0557 | −1.43123 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | − 35.7082i | − 1.69655i | −0.529558 | − | 0.848274i | \(-0.677642\pi\) | ||||
| 0.529558 | − | 0.848274i | \(-0.322358\pi\) | |||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | −13.4164 | −0.635999 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 5.52786i | 0.261459i | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | 22.3607 | 1.05527 | 0.527633 | − | 0.849473i | \(-0.323080\pi\) | ||||
| 0.527633 | + | 0.849473i | \(0.323080\pi\) | |||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 42.0000 | 1.95614 | 0.978068 | − | 0.208288i | \(-0.0667892\pi\) | ||||
| 0.978068 | + | 0.208288i | \(0.0667892\pi\) | |||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | − 20.0689i | − 0.932680i | −0.884606 | − | 0.466340i | \(-0.845572\pi\) | ||||
| 0.884606 | − | 0.466340i | \(-0.154428\pi\) | |||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 43.1246i | 1.99557i | 0.0665285 | + | 0.997785i | \(0.478808\pi\) | ||||
| −0.0665285 | + | 0.997785i | \(0.521192\pi\) | |||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 74.2492 | 3.42851 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 49.8885i | 2.27001i | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | − 11.3475i | − 0.514205i | −0.966384 | − | 0.257103i | \(-0.917232\pi\) | ||||
| 0.966384 | − | 0.257103i | \(-0.0827679\pi\) | |||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 30.4721 | 1.37800 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | −29.3050 | −1.30925 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | − 24.2918i | − 1.08312i | −0.840663 | − | 0.541559i | \(-0.817834\pi\) | ||||
| 0.840663 | − | 0.541559i | \(-0.182166\pi\) | |||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 40.2492 | 1.79107 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 16.0689i | 0.713644i | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
| −0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | − 4.87539i | − 0.214835i | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 42.0000 | 1.84005 | 0.920027 | − | 0.391856i | \(-0.128167\pi\) | ||||
| 0.920027 | + | 0.391856i | \(0.128167\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | − 45.5967i | − 1.99381i | −0.0786374 | − | 0.996903i | \(-0.525057\pi\) | ||||
| 0.0786374 | − | 0.996903i | \(-0.474943\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 32.3607 | 1.41234 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −36.4164 | −1.58332 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | − 44.0689i | − 1.90526i | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −38.0000 | −1.63375 | −0.816874 | − | 0.576816i | \(-0.804295\pi\) | ||||
| −0.816874 | + | 0.576816i | \(0.804295\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 2.47214i | 0.106090i | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | −30.0000 | −1.28506 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | − 30.7639i | − 1.31537i | −0.753293 | − | 0.657685i | \(-0.771536\pi\) | ||||
| 0.753293 | − | 0.657685i | \(-0.228464\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | −19.7508 | −0.842943 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | − 34.5410i | − 1.45573i | −0.685720 | − | 0.727865i | \(-0.740513\pi\) | ||||
| 0.685720 | − | 0.727865i | \(-0.259487\pi\) | |||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 12.6525i | 0.531354i | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | −31.3050 | −1.31237 | −0.656186 | − | 0.754599i | \(-0.727831\pi\) | ||||
| −0.656186 | + | 0.754599i | \(0.727831\pi\) | |||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 38.5410i | 1.60727i | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 22.4721 | 0.932301 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | − 26.5410i | − 1.09547i | −0.836653 | − | 0.547733i | \(-0.815491\pi\) | ||||
| 0.836653 | − | 0.547733i | \(-0.184509\pi\) | |||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | 40.2492 | 1.64180 | 0.820900 | − | 0.571072i | \(-0.193472\pi\) | ||||
| 0.820900 | + | 0.571072i | \(0.193472\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 20.8754i | 0.850112i | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | −24.5967 | −1.00000 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 21.8197i | 0.885633i | 0.896612 | + | 0.442816i | \(0.146021\pi\) | ||||
| −0.896612 | + | 0.442816i | \(0.853979\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | −38.8328 | −1.57359 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 12.3607i | 0.498431i | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | −42.6099 | −1.70988 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 31.4164i | 1.25867i | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 25.0000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 28.2918i | 1.12273i | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | −49.1935 | −1.94303 | −0.971513 | − | 0.236986i | \(-0.923841\pi\) | ||||
| −0.971513 | + | 0.236986i | \(0.923841\pi\) | |||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 8.06888i | 0.318206i | 0.987262 | + | 0.159103i | \(0.0508601\pi\) | ||||
| −0.987262 | + | 0.159103i | \(0.949140\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 18.6950 | 0.736117 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 46.5410i | 1.82972i | 0.403775 | + | 0.914858i | \(0.367698\pi\) | ||||
| −0.403775 | + | 0.914858i | \(0.632302\pi\) | |||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 40.2492 | 1.56551 | 0.782757 | − | 0.622328i | \(-0.213813\pi\) | ||||
| 0.782757 | + | 0.622328i | \(0.213813\pi\) | |||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | − 46.2492i | − 1.79078i | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | −23.1935 | −0.896712 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 27.6393i | 1.06384i | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | −33.5279 | −1.28479 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 51.1246i | 1.95623i | 0.208068 | + | 0.978114i | \(0.433283\pi\) | ||||
| −0.208068 | + | 0.978114i | \(0.566717\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | − 17.3050i | − 0.660225i | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 22.3607 | 0.844551 | 0.422276 | − | 0.906467i | \(-0.361231\pi\) | ||||
| 0.422276 | + | 0.906467i | \(0.361231\pi\) | |||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0.806504 | 0.0303747 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | − 94.2492i | − 3.54461i | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | −46.0000 | −1.72757 | −0.863783 | − | 0.503864i | \(-0.831911\pi\) | ||||
| −0.863783 | + | 0.503864i | \(0.831911\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | −11.4164 | −0.425169 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | − 16.5836i | − 0.616750i | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | −30.0000 | −1.11417 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | − 41.0132i | − 1.52109i | −0.649283 | − | 0.760547i | \(-0.724931\pi\) | ||||
| 0.649283 | − | 0.760547i | \(-0.275069\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | −24.0557 | −0.890953 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | − 56.4296i | − 2.08144i | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | 14.5410i | 0.533458i | 0.963772 | + | 0.266729i | \(0.0859429\pi\) | ||||
| −0.963772 | + | 0.266729i | \(0.914057\pi\) | |||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 10.0000 | 0.366372 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 6.31811i | 0.231167i | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | −103.193 | −3.77061 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 42.0000 | 1.52250 | 0.761249 | − | 0.648459i | \(-0.224586\pi\) | ||||
| 0.761249 | + | 0.648459i | \(0.224586\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 70.2492i | 2.54319i | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
| −0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | 0 | 0 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | − 33.1672i | − 1.18530i | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 56.0689i | 1.99864i | 0.0368739 | + | 0.999320i | \(0.488260\pi\) | ||||
| −0.0368739 | + | 0.999320i | \(0.511740\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 38.4721 | 1.36964 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | −8.83282 | −0.312092 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 90.2492 | 3.18087 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 27.6393i | 0.972950i | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | −54.0000 | −1.89854 | −0.949269 | − | 0.314464i | \(-0.898175\pi\) | ||||
| −0.949269 | + | 0.314464i | \(0.898175\pi\) | |||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | − 55.1246i | − 1.93093i | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | −31.3050 | −1.09255 | −0.546275 | − | 0.837606i | \(-0.683955\pi\) | ||||
| −0.546275 | + | 0.837606i | \(0.683955\pi\) | |||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | − 50.1803i | − 1.74918i | −0.484866 | − | 0.874588i | \(-0.661132\pi\) | ||||
| 0.484866 | − | 0.874588i | \(-0.338868\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | − 10.5410i | − 0.366547i | −0.983062 | − | 0.183274i | \(-0.941331\pi\) | ||||
| 0.983062 | − | 0.183274i | \(-0.0586694\pi\) | |||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | −13.4164 | −0.465971 | −0.232986 | − | 0.972480i | \(-0.574849\pi\) | ||||
| −0.232986 | + | 0.972480i | \(0.574849\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 53.0132i | 1.83460i | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | 7.00000 | 0.241379 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | − 38.6950i | − 1.33273i | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 29.0689 | 1.00000 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 57.5967i | 1.97905i | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 12.1378 | 0.416567 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 28.9443 | 0.986418 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 47.7082i | 1.62401i | 0.583653 | + | 0.812003i | \(0.301623\pi\) | ||||
| −0.583653 | + | 0.812003i | \(0.698377\pi\) | |||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 21.0132i | 0.713644i | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | − 58.5410i | − 1.97905i | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 58.1378 | 1.95871 | 0.979356 | − | 0.202145i | \(-0.0647913\pi\) | ||||
| 0.979356 | + | 0.202145i | \(0.0647913\pi\) | |||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 23.3475i | 0.785707i | 0.919601 | + | 0.392853i | \(0.128512\pi\) | ||||
| −0.919601 | + | 0.392853i | \(0.871488\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 16.8754i | 0.566620i | 0.959028 | + | 0.283310i | \(0.0914325\pi\) | ||||
| −0.959028 | + | 0.283310i | \(0.908567\pi\) | |||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 66.2492 | 2.22193 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | − 43.7771i | − 1.45681i | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 4.47214 | 0.148659 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | − 39.4853i | − 1.31109i | −0.755157 | − | 0.655544i | \(-0.772439\pi\) | ||||
| 0.755157 | − | 0.655544i | \(-0.227561\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 26.4984 | 0.878898 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | − 37.0820i | − 1.22589i | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 26.6950 | 0.879632 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 0 | 0 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | − 3.20976i | − 0.105422i | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | −49.1935 | −1.61399 | −0.806993 | − | 0.590561i | \(-0.798907\pi\) | ||||
| −0.806993 | + | 0.590561i | \(0.798907\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 0 | 0 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 42.0000 | 1.36916 | 0.684580 | − | 0.728937i | \(-0.259985\pi\) | ||||
| 0.684580 | + | 0.728937i | \(0.259985\pi\) | |||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 34.4721i | 1.12257i | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 64.7214 | 2.10539 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 36.2918i | 1.17932i | 0.807650 | + | 0.589662i | \(0.200739\pi\) | ||||
| −0.807650 | + | 0.589662i | \(0.799261\pi\) | |||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −31.0000 | −1.00000 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | − 29.0132i | − 0.934936i | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | 3.93112i | 0.126416i | 0.998000 | + | 0.0632081i | \(0.0201332\pi\) | ||||
| −0.998000 | + | 0.0632081i | \(0.979867\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | −19.7508 | −0.630594 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 62.5410i | 1.99475i | 0.0724180 | + | 0.997374i | \(0.476928\pi\) | ||||
| −0.0724180 | + | 0.997374i | \(0.523072\pi\) | |||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | − 1.88854i | − 0.0601130i | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 52.1378 | 1.65788 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))