Defining parameters
Level: | \( N \) | \(=\) | \( 320 = 2^{6} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 320.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(320))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 8 | 52 |
Cusp forms | 37 | 8 | 29 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(320))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
320.2.a.a | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(-2\) | $-$ | $-$ | \(q-2q^{3}+q^{5}-2q^{7}+q^{9}-2q^{13}+\cdots\) | |
320.2.a.b | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(-2\) | \(1\) | \(2\) | $+$ | $-$ | \(q-2q^{3}+q^{5}+2q^{7}+q^{9}-4q^{11}+\cdots\) | |
320.2.a.c | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | $+$ | $+$ | \(q-q^{5}-4q^{7}-3q^{9}-4q^{11}+2q^{13}+\cdots\) | |
320.2.a.d | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(4\) | $-$ | $+$ | \(q-q^{5}+4q^{7}-3q^{9}+4q^{11}+2q^{13}+\cdots\) | |
320.2.a.e | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(-2\) | $+$ | $-$ | \(q+2q^{3}+q^{5}-2q^{7}+q^{9}+4q^{11}+\cdots\) | |
320.2.a.f | $1$ | $2.555$ | \(\Q\) | None | \(0\) | \(2\) | \(1\) | \(2\) | $+$ | $-$ | \(q+2q^{3}+q^{5}+2q^{7}+q^{9}-2q^{13}+\cdots\) | |
320.2.a.g | $2$ | $2.555$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | \(q+\beta q^{3}-q^{5}+\beta q^{7}+5q^{9}-2\beta q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(320))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(320)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)