Properties

 Label 320.10.a.l Level 320 Weight 10 Character orbit 320.a Self dual yes Analytic conductor 164.811 Analytic rank 1 Dimension 2 CM no Inner twists 1

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$320 = 2^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$10$$ Character orbit: $$[\chi]$$ $$=$$ 320.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$164.811467572$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{79})$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{4}$$ Twist minimal: no (minimal twist has level 20) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 16\sqrt{79}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -130 + \beta ) q^{3} + 625 q^{5} + ( 190 - 69 \beta ) q^{7} + ( 17441 - 260 \beta ) q^{9} +O(q^{10})$$ $$q + ( -130 + \beta ) q^{3} + 625 q^{5} + ( 190 - 69 \beta ) q^{7} + ( 17441 - 260 \beta ) q^{9} + ( 51360 + 30 \beta ) q^{11} + ( -89570 - 564 \beta ) q^{13} + ( -81250 + 625 \beta ) q^{15} + ( 158010 + 348 \beta ) q^{17} + ( 68636 + 5160 \beta ) q^{19} + ( -1420156 + 9160 \beta ) q^{21} + ( 332730 + 6393 \beta ) q^{23} + 390625 q^{25} + ( -4966780 + 31558 \beta ) q^{27} + ( 3446874 + 5880 \beta ) q^{29} + ( -145916 + 26250 \beta ) q^{31} + ( -6070080 + 47460 \beta ) q^{33} + ( 118750 - 43125 \beta ) q^{35} + ( -5630690 + 59976 \beta ) q^{37} + ( 237764 - 16250 \beta ) q^{39} + ( 14886726 + 72180 \beta ) q^{41} + ( -5854090 - 99615 \beta ) q^{43} + ( 10900625 - 162500 \beta ) q^{45} + ( -31246650 - 42573 \beta ) q^{47} + ( 55968957 - 26220 \beta ) q^{49} + ( -13503348 + 112770 \beta ) q^{51} + ( -4708890 + 212532 \beta ) q^{53} + ( 32100000 + 18750 \beta ) q^{55} + ( 95433160 - 602164 \beta ) q^{57} + ( -46465428 - 373980 \beta ) q^{59} + ( -97836962 - 721440 \beta ) q^{61} + ( 366132350 - 1252829 \beta ) q^{63} + ( -55981250 - 352500 \beta ) q^{65} + ( -109883710 + 203139 \beta ) q^{67} + ( 86037132 - 498360 \beta ) q^{69} + ( -155603508 + 1397610 \beta ) q^{71} + ( -49612030 - 2047716 \beta ) q^{73} + ( -50781250 + 390625 \beta ) q^{75} + ( -32105280 - 3538140 \beta ) q^{77} + ( -271130888 - 70020 \beta ) q^{79} + ( 940619189 - 3951740 \beta ) q^{81} + ( -628457850 + 192957 \beta ) q^{83} + ( 98756250 + 217500 \beta ) q^{85} + ( -329176500 + 2682474 \beta ) q^{87} + ( -231145926 + 5421960 \beta ) q^{89} + ( 770018884 + 6073170 \beta ) q^{91} + ( 549849080 - 3558416 \beta ) q^{93} + ( 42897500 + 3225000 \beta ) q^{95} + ( 835858370 - 2902956 \beta ) q^{97} + ( 738022560 - 12830370 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 260q^{3} + 1250q^{5} + 380q^{7} + 34882q^{9} + O(q^{10})$$ $$2q - 260q^{3} + 1250q^{5} + 380q^{7} + 34882q^{9} + 102720q^{11} - 179140q^{13} - 162500q^{15} + 316020q^{17} + 137272q^{19} - 2840312q^{21} + 665460q^{23} + 781250q^{25} - 9933560q^{27} + 6893748q^{29} - 291832q^{31} - 12140160q^{33} + 237500q^{35} - 11261380q^{37} + 475528q^{39} + 29773452q^{41} - 11708180q^{43} + 21801250q^{45} - 62493300q^{47} + 111937914q^{49} - 27006696q^{51} - 9417780q^{53} + 64200000q^{55} + 190866320q^{57} - 92930856q^{59} - 195673924q^{61} + 732264700q^{63} - 111962500q^{65} - 219767420q^{67} + 172074264q^{69} - 311207016q^{71} - 99224060q^{73} - 101562500q^{75} - 64210560q^{77} - 542261776q^{79} + 1881238378q^{81} - 1256915700q^{83} + 197512500q^{85} - 658353000q^{87} - 462291852q^{89} + 1540037768q^{91} + 1099698160q^{93} + 85795000q^{95} + 1671716740q^{97} + 1476045120q^{99} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −8.88819 8.88819
0 −272.211 0 625.000 0 10002.6 0 54415.9 0
1.2 0 12.2111 0 625.000 0 −9622.57 0 −19533.9 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.10.a.l 2
4.b odd 2 1 320.10.a.t 2
8.b even 2 1 80.10.a.j 2
8.d odd 2 1 20.10.a.b 2
24.f even 2 1 180.10.a.e 2
40.e odd 2 1 100.10.a.c 2
40.f even 2 1 400.10.a.l 2
40.i odd 4 2 400.10.c.l 4
40.k even 4 2 100.10.c.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.10.a.b 2 8.d odd 2 1
80.10.a.j 2 8.b even 2 1
100.10.a.c 2 40.e odd 2 1
100.10.c.c 4 40.k even 4 2
180.10.a.e 2 24.f even 2 1
320.10.a.l 2 1.a even 1 1 trivial
320.10.a.t 2 4.b odd 2 1
400.10.a.l 2 40.f even 2 1
400.10.c.l 4 40.i odd 4 2

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{2} + 260 T_{3} - 3324$$ acting on $$S_{10}^{\mathrm{new}}(\Gamma_0(320))$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + 260 T + 36042 T^{2} + 5117580 T^{3} + 387420489 T^{4}$$
$5$ $$( 1 - 625 T )^{2}$$
$7$ $$1 - 380 T - 15543150 T^{2} - 15334370660 T^{3} + 1628413597910449 T^{4}$$
$11$ $$1 - 102720 T + 7335543382 T^{2} - 242208386819520 T^{3} + 5559917313492231481 T^{4}$$
$13$ $$1 + 179140 T + 22798610142 T^{2} + 1899690017679220 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$
$17$ $$1 - 316020 T + 259693705798 T^{2} - 37476140730581940 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$
$19$ $$1 - 137272 T + 111610161654 T^{2} - 44295985649518888 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$
$23$ $$1 - 665460 T + 2886450615250 T^{2} - 1198595050097167980 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$
$29$ $$1 - 6893748 T + 40195999658014 T^{2} -$$$$10\!\cdots\!12$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$
$31$ $$1 + 291832 T + 38964935800398 T^{2} + 7715927814392939272 T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$
$37$ $$1 + 11261380 T + 218879982937230 T^{2} +$$$$14\!\cdots\!60$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$
$41$ $$1 - 29773452 T + 771012402449398 T^{2} -$$$$97\!\cdots\!72$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$
$43$ $$1 + 11708180 T + 838769843899386 T^{2} +$$$$58\!\cdots\!40$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$
$47$ $$1 + 62493300 T + 3177958884734338 T^{2} +$$$$69\!\cdots\!00$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$
$53$ $$1 + 9417780 T + 5708185761526990 T^{2} +$$$$31\!\cdots\!40$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$
$59$ $$1 + 92930856 T + 16656477955483462 T^{2} +$$$$80\!\cdots\!84$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$
$61$ $$1 + 195673924 T + 22434263296171326 T^{2} +$$$$22\!\cdots\!84$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$
$67$ $$1 + 219767420 T + 65652945987990090 T^{2} +$$$$59\!\cdots\!40$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$
$71$ $$1 + 311207016 T + 76405636625293726 T^{2} +$$$$14\!\cdots\!96$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$
$73$ $$1 + 99224060 T + 35402447061205782 T^{2} +$$$$58\!\cdots\!80$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$
$79$ $$1 + 542261776 T + 313115996157615582 T^{2} +$$$$64\!\cdots\!44$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$
$83$ $$1 + 1256915700 T + 768086791626261130 T^{2} +$$$$23\!\cdots\!00$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$
$89$ $$1 + 462291852 T + 159603168035249494 T^{2} +$$$$16\!\cdots\!68$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$
$97$ $$1 - 1671716740 T + 2048690578856969670 T^{2} -$$$$12\!\cdots\!80$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$