Defining parameters
Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 32.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(32, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 9 | 27 |
Cusp forms | 28 | 7 | 21 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(32, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
32.9.d.a | $1$ | $13.036$ | \(\Q\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-34\) | \(0\) | \(0\) | \(q-34q^{3}-5405q^{9}+27166q^{11}+\cdots\) |
32.9.d.b | $6$ | $13.036$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(36\) | \(0\) | \(0\) | \(q+(6+\beta _{1})q^{3}-\beta _{2}q^{5}+(-\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(32, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(32, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)