Properties

Label 32.9.c
Level $32$
Weight $9$
Character orbit 32.c
Rep. character $\chi_{32}(31,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $36$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 32.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(36\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(32, [\chi])\).

Total New Old
Modular forms 36 8 28
Cusp forms 28 8 20
Eisenstein series 8 0 8

Trace form

\( 8 q + 336 q^{5} - 13688 q^{9} + O(q^{10}) \) \( 8 q + 336 q^{5} - 13688 q^{9} + 79952 q^{13} - 143472 q^{17} - 98048 q^{21} + 731160 q^{25} - 1196208 q^{29} + 751232 q^{33} + 1262160 q^{37} - 4010736 q^{41} + 6978128 q^{45} - 9036792 q^{49} - 6827952 q^{53} + 29794176 q^{57} - 1176496 q^{61} - 10134240 q^{65} - 69833984 q^{69} + 23856528 q^{73} + 138655488 q^{77} - 100218232 q^{81} - 35762784 q^{85} + 85400976 q^{89} + 118678528 q^{93} - 339534448 q^{97} + O(q^{100}) \)

Decomposition of \(S_{9}^{\mathrm{new}}(32, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
32.9.c.a 32.c 4.b $4$ $13.036$ \(\Q(i, \sqrt{39})\) None \(0\) \(0\) \(-728\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{3})q^{3}+(-182+\beta _{2})q^{5}+(17\beta _{1}+\cdots)q^{7}+\cdots\)
32.9.c.b 32.c 4.b $4$ $13.036$ \(\Q(i, \sqrt{19})\) None \(0\) \(0\) \(1064\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+(266+3\beta _{2})q^{5}+(-7\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(32, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(32, [\chi]) \cong \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)