Defining parameters
| Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 32.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(32\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(32, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 32 | 8 | 24 |
| Cusp forms | 24 | 6 | 18 |
| Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(32, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 32.8.b.a | $6$ | $9.996$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(688\) | \(q+\beta _{2}q^{3}+(\beta _{2}+\beta _{3})q^{5}+(115+\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(32, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(32, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)