Properties

Label 32.7.h
Level $32$
Weight $7$
Character orbit 32.h
Rep. character $\chi_{32}(3,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $92$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 32.h (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(32, [\chi])\).

Total New Old
Modular forms 100 100 0
Cusp forms 92 92 0
Eisenstein series 8 8 0

Trace form

\( 92 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} - 4 q^{9} + 2996 q^{10} - 4 q^{11} - 3892 q^{12} - 4 q^{13} - 8532 q^{14} - 8 q^{15} + 14096 q^{16} + 24296 q^{18} - 4 q^{19} - 14004 q^{20}+ \cdots + 5967768 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(32, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
32.7.h.a 32.h 32.h $92$ $7.362$ None 32.7.h.a \(-4\) \(-4\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{8}]$