Properties

Label 32.7.d.a
Level $32$
Weight $7$
Character orbit 32.d
Self dual yes
Analytic conductor $7.362$
Analytic rank $0$
Dimension $1$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 32.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(7.36173067584\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

\(f(q)\) \(=\) \( q - 46 q^{3} + 1387 q^{9} + O(q^{10}) \) \( q - 46 q^{3} + 1387 q^{9} + 2338 q^{11} - 1726 q^{17} + 2482 q^{19} + 15625 q^{25} - 30268 q^{27} - 107548 q^{33} + 134642 q^{41} + 74914 q^{43} + 117649 q^{49} + 79396 q^{51} - 114172 q^{57} - 304958 q^{59} + 596626 q^{67} - 593134 q^{73} - 718750 q^{75} + 381205 q^{81} - 678926 q^{83} - 357262 q^{89} + 1822754 q^{97} + 3242806 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/32\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(31\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
15.1
0
0 −46.0000 0 0 0 0 0 1387.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 32.7.d.a 1
3.b odd 2 1 288.7.b.a 1
4.b odd 2 1 8.7.d.a 1
8.b even 2 1 8.7.d.a 1
8.d odd 2 1 CM 32.7.d.a 1
12.b even 2 1 72.7.b.a 1
16.e even 4 2 256.7.c.d 2
16.f odd 4 2 256.7.c.d 2
24.f even 2 1 288.7.b.a 1
24.h odd 2 1 72.7.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.7.d.a 1 4.b odd 2 1
8.7.d.a 1 8.b even 2 1
32.7.d.a 1 1.a even 1 1 trivial
32.7.d.a 1 8.d odd 2 1 CM
72.7.b.a 1 12.b even 2 1
72.7.b.a 1 24.h odd 2 1
256.7.c.d 2 16.e even 4 2
256.7.c.d 2 16.f odd 4 2
288.7.b.a 1 3.b odd 2 1
288.7.b.a 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 46 \) acting on \(S_{7}^{\mathrm{new}}(32, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 46 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -2338 + T \)
$13$ \( T \)
$17$ \( 1726 + T \)
$19$ \( -2482 + T \)
$23$ \( T \)
$29$ \( T \)
$31$ \( T \)
$37$ \( T \)
$41$ \( -134642 + T \)
$43$ \( -74914 + T \)
$47$ \( T \)
$53$ \( T \)
$59$ \( 304958 + T \)
$61$ \( T \)
$67$ \( -596626 + T \)
$71$ \( T \)
$73$ \( 593134 + T \)
$79$ \( T \)
$83$ \( 678926 + T \)
$89$ \( 357262 + T \)
$97$ \( -1822754 + T \)
show more
show less