Properties

Label 32.7
Level 32
Weight 7
Dimension 103
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 448
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 32 = 2^{5} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(448\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(32))\).

Total New Old
Modular forms 208 113 95
Cusp forms 176 103 73
Eisenstein series 32 10 22

Trace form

\( 103 q - 4 q^{2} - 2 q^{3} - 4 q^{4} + 40 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} - 1655 q^{9} + 2996 q^{10} + 1358 q^{11} - 3892 q^{12} - 4216 q^{13} - 8532 q^{14} - 8 q^{15} + 14096 q^{16} + 2934 q^{17} + 24296 q^{18}+ \cdots + 11669854 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(32))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
32.7.c \(\chi_{32}(31, \cdot)\) 32.7.c.a 2 1
32.7.c.b 4
32.7.d \(\chi_{32}(15, \cdot)\) 32.7.d.a 1 1
32.7.d.b 4
32.7.f \(\chi_{32}(7, \cdot)\) None 0 2
32.7.h \(\chi_{32}(3, \cdot)\) 32.7.h.a 92 4

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(32))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(32)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)