Defining parameters
Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 32.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(32))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 5 | 19 |
Cusp forms | 16 | 5 | 11 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(32))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
32.6.a.a | $1$ | $5.132$ | \(\Q\) | None | \(0\) | \(-8\) | \(14\) | \(-208\) | $+$ | \(q-8q^{3}+14q^{5}-208q^{7}-179q^{9}+\cdots\) | |
32.6.a.b | $1$ | $5.132$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-82\) | \(0\) | $+$ | \(q-82q^{5}-3^{5}q^{9}-1194q^{13}+2242q^{17}+\cdots\) | |
32.6.a.c | $1$ | $5.132$ | \(\Q\) | None | \(0\) | \(8\) | \(14\) | \(208\) | $-$ | \(q+8q^{3}+14q^{5}+208q^{7}-179q^{9}+\cdots\) | |
32.6.a.d | $2$ | $5.132$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(92\) | \(0\) | $-$ | \(q+\beta q^{3}+46q^{5}-6\beta q^{7}+525q^{9}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(32))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(32)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)