Properties

Label 32.4.g
Level 3232
Weight 44
Character orbit 32.g
Rep. character χ32(5,)\chi_{32}(5,\cdot)
Character field Q(ζ8)\Q(\zeta_{8})
Dimension 4444
Newform subspaces 11
Sturm bound 1616
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 32=25 32 = 2^{5}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 32.g (of order 88 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 32 32
Character field: Q(ζ8)\Q(\zeta_{8})
Newform subspaces: 1 1
Sturm bound: 1616
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M4(32,[χ])M_{4}(32, [\chi]).

Total New Old
Modular forms 52 52 0
Cusp forms 44 44 0
Eisenstein series 8 8 0

Trace form

44q4q24q34q44q54q64q74q84q9+116q104q1152q124q13212q14304q16184q184q19+76q204q21+5424q99+O(q100) 44 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} - 4 q^{9} + 116 q^{10} - 4 q^{11} - 52 q^{12} - 4 q^{13} - 212 q^{14} - 304 q^{16} - 184 q^{18} - 4 q^{19} + 76 q^{20} - 4 q^{21}+ \cdots - 5424 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(32,[χ])S_{4}^{\mathrm{new}}(32, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
32.4.g.a 32.g 32.g 4444 1.8881.888 None 32.4.g.a 4-4 4-4 4-4 4-4 SU(2)[C8]\mathrm{SU}(2)[C_{8}]