Properties

Label 32.4.b
Level $32$
Weight $4$
Character orbit 32.b
Rep. character $\chi_{32}(17,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 32.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(32, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 8 2 6
Eisenstein series 8 2 6

Trace form

\( 2 q + 16 q^{7} - 2 q^{9} - 112 q^{15} - 28 q^{17} + 304 q^{23} + 26 q^{25} - 448 q^{31} + 168 q^{33} + 560 q^{39} - 140 q^{41} - 672 q^{47} - 558 q^{49} + 336 q^{55} + 392 q^{57} - 16 q^{63} + 1120 q^{65}+ \cdots + 1988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(32, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
32.4.b.a 32.b 8.b $2$ $1.888$ \(\Q(\sqrt{-7}) \) None 8.4.b.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}-2\beta q^{5}+8q^{7}-q^{9}+3\beta q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(32, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(32, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)