Defining parameters
Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 32.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(32))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 3 | 13 |
Cusp forms | 8 | 3 | 5 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(32))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
32.4.a.a | $1$ | $1.888$ | \(\Q\) | None | \(0\) | \(-8\) | \(-10\) | \(-16\) | $-$ | \(q-8q^{3}-10q^{5}-2^{4}q^{7}+37q^{9}+40q^{11}+\cdots\) | |
32.4.a.b | $1$ | $1.888$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(22\) | \(0\) | $+$ | \(q+22q^{5}-3^{3}q^{9}-18q^{13}-94q^{17}+\cdots\) | |
32.4.a.c | $1$ | $1.888$ | \(\Q\) | None | \(0\) | \(8\) | \(-10\) | \(16\) | $+$ | \(q+8q^{3}-10q^{5}+2^{4}q^{7}+37q^{9}-40q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(32))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(32)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)