Properties

Label 32.2.g.a.5.1
Level $32$
Weight $2$
Character 32.5
Analytic conductor $0.256$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 32.g (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.255521286468\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 5.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 32.5
Dual form 32.2.g.a.13.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.41421i q^{2} +(0.707107 + 1.70711i) q^{3} -2.00000 q^{4} +(-3.12132 - 1.29289i) q^{5} +(2.41421 - 1.00000i) q^{6} +(1.00000 + 1.00000i) q^{7} +2.82843i q^{8} +(-0.292893 + 0.292893i) q^{9} +O(q^{10})\) \(q-1.41421i q^{2} +(0.707107 + 1.70711i) q^{3} -2.00000 q^{4} +(-3.12132 - 1.29289i) q^{5} +(2.41421 - 1.00000i) q^{6} +(1.00000 + 1.00000i) q^{7} +2.82843i q^{8} +(-0.292893 + 0.292893i) q^{9} +(-1.82843 + 4.41421i) q^{10} +(0.121320 - 0.292893i) q^{11} +(-1.41421 - 3.41421i) q^{12} +(1.70711 - 0.707107i) q^{13} +(1.41421 - 1.41421i) q^{14} -6.24264i q^{15} +4.00000 q^{16} -2.82843i q^{17} +(0.414214 + 0.414214i) q^{18} +(-5.53553 + 2.29289i) q^{19} +(6.24264 + 2.58579i) q^{20} +(-1.00000 + 2.41421i) q^{21} +(-0.414214 - 0.171573i) q^{22} +(0.171573 - 0.171573i) q^{23} +(-4.82843 + 2.00000i) q^{24} +(4.53553 + 4.53553i) q^{25} +(-1.00000 - 2.41421i) q^{26} +(4.41421 + 1.82843i) q^{27} +(-2.00000 - 2.00000i) q^{28} +(1.12132 + 2.70711i) q^{29} -8.82843 q^{30} -4.00000 q^{31} -5.65685i q^{32} +0.585786 q^{33} -4.00000 q^{34} +(-1.82843 - 4.41421i) q^{35} +(0.585786 - 0.585786i) q^{36} +(1.70711 + 0.707107i) q^{37} +(3.24264 + 7.82843i) q^{38} +(2.41421 + 2.41421i) q^{39} +(3.65685 - 8.82843i) q^{40} +(-5.82843 + 5.82843i) q^{41} +(3.41421 + 1.41421i) q^{42} +(3.29289 - 7.94975i) q^{43} +(-0.242641 + 0.585786i) q^{44} +(1.29289 - 0.535534i) q^{45} +(-0.242641 - 0.242641i) q^{46} +11.6569i q^{47} +(2.82843 + 6.82843i) q^{48} -5.00000i q^{49} +(6.41421 - 6.41421i) q^{50} +(4.82843 - 2.00000i) q^{51} +(-3.41421 + 1.41421i) q^{52} +(3.12132 - 7.53553i) q^{53} +(2.58579 - 6.24264i) q^{54} +(-0.757359 + 0.757359i) q^{55} +(-2.82843 + 2.82843i) q^{56} +(-7.82843 - 7.82843i) q^{57} +(3.82843 - 1.58579i) q^{58} +(-6.12132 - 2.53553i) q^{59} +12.4853i q^{60} +(0.292893 + 0.707107i) q^{61} +5.65685i q^{62} -0.585786 q^{63} -8.00000 q^{64} -6.24264 q^{65} -0.828427i q^{66} +(1.53553 + 3.70711i) q^{67} +5.65685i q^{68} +(0.414214 + 0.171573i) q^{69} +(-6.24264 + 2.58579i) q^{70} +(-0.171573 - 0.171573i) q^{71} +(-0.828427 - 0.828427i) q^{72} +(7.00000 - 7.00000i) q^{73} +(1.00000 - 2.41421i) q^{74} +(-4.53553 + 10.9497i) q^{75} +(11.0711 - 4.58579i) q^{76} +(0.414214 - 0.171573i) q^{77} +(3.41421 - 3.41421i) q^{78} -6.00000i q^{79} +(-12.4853 - 5.17157i) q^{80} +10.0711i q^{81} +(8.24264 + 8.24264i) q^{82} +(6.12132 - 2.53553i) q^{83} +(2.00000 - 4.82843i) q^{84} +(-3.65685 + 8.82843i) q^{85} +(-11.2426 - 4.65685i) q^{86} +(-3.82843 + 3.82843i) q^{87} +(0.828427 + 0.343146i) q^{88} +(-2.65685 - 2.65685i) q^{89} +(-0.757359 - 1.82843i) q^{90} +(2.41421 + 1.00000i) q^{91} +(-0.343146 + 0.343146i) q^{92} +(-2.82843 - 6.82843i) q^{93} +16.4853 q^{94} +20.2426 q^{95} +(9.65685 - 4.00000i) q^{96} -1.51472 q^{97} -7.07107 q^{98} +(0.0502525 + 0.121320i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 4 q^{5} + 4 q^{6} + 4 q^{7} - 4 q^{9} + O(q^{10}) \) \( 4 q - 8 q^{4} - 4 q^{5} + 4 q^{6} + 4 q^{7} - 4 q^{9} + 4 q^{10} - 8 q^{11} + 4 q^{13} + 16 q^{16} - 4 q^{18} - 8 q^{19} + 8 q^{20} - 4 q^{21} + 4 q^{22} + 12 q^{23} - 8 q^{24} + 4 q^{25} - 4 q^{26} + 12 q^{27} - 8 q^{28} - 4 q^{29} - 24 q^{30} - 16 q^{31} + 8 q^{33} - 16 q^{34} + 4 q^{35} + 8 q^{36} + 4 q^{37} - 4 q^{38} + 4 q^{39} - 8 q^{40} - 12 q^{41} + 8 q^{42} + 16 q^{43} + 16 q^{44} + 8 q^{45} + 16 q^{46} + 20 q^{50} + 8 q^{51} - 8 q^{52} + 4 q^{53} + 16 q^{54} - 20 q^{55} - 20 q^{57} + 4 q^{58} - 16 q^{59} + 4 q^{61} - 8 q^{63} - 32 q^{64} - 8 q^{65} - 8 q^{67} - 4 q^{69} - 8 q^{70} - 12 q^{71} + 8 q^{72} + 28 q^{73} + 4 q^{74} - 4 q^{75} + 16 q^{76} - 4 q^{77} + 8 q^{78} - 16 q^{80} + 16 q^{82} + 16 q^{83} + 8 q^{84} + 8 q^{85} - 28 q^{86} - 4 q^{87} - 8 q^{88} + 12 q^{89} - 20 q^{90} + 4 q^{91} - 24 q^{92} + 32 q^{94} + 64 q^{95} + 16 q^{96} - 40 q^{97} + 20 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/32\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 0.707107 + 1.70711i 0.408248 + 0.985599i 0.985599 + 0.169102i \(0.0540867\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) −2.00000 −1.00000
\(5\) −3.12132 1.29289i −1.39590 0.578199i −0.447214 0.894427i \(-0.647584\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) 2.41421 1.00000i 0.985599 0.408248i
\(7\) 1.00000 + 1.00000i 0.377964 + 0.377964i 0.870367 0.492403i \(-0.163881\pi\)
−0.492403 + 0.870367i \(0.663881\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −0.292893 + 0.292893i −0.0976311 + 0.0976311i
\(10\) −1.82843 + 4.41421i −0.578199 + 1.39590i
\(11\) 0.121320 0.292893i 0.0365795 0.0883106i −0.904534 0.426401i \(-0.859781\pi\)
0.941113 + 0.338091i \(0.109781\pi\)
\(12\) −1.41421 3.41421i −0.408248 0.985599i
\(13\) 1.70711 0.707107i 0.473466 0.196116i −0.133174 0.991093i \(-0.542517\pi\)
0.606640 + 0.794977i \(0.292517\pi\)
\(14\) 1.41421 1.41421i 0.377964 0.377964i
\(15\) 6.24264i 1.61184i
\(16\) 4.00000 1.00000
\(17\) 2.82843i 0.685994i −0.939336 0.342997i \(-0.888558\pi\)
0.939336 0.342997i \(-0.111442\pi\)
\(18\) 0.414214 + 0.414214i 0.0976311 + 0.0976311i
\(19\) −5.53553 + 2.29289i −1.26994 + 0.526026i −0.912946 0.408081i \(-0.866198\pi\)
−0.356993 + 0.934107i \(0.616198\pi\)
\(20\) 6.24264 + 2.58579i 1.39590 + 0.578199i
\(21\) −1.00000 + 2.41421i −0.218218 + 0.526825i
\(22\) −0.414214 0.171573i −0.0883106 0.0365795i
\(23\) 0.171573 0.171573i 0.0357754 0.0357754i −0.688993 0.724768i \(-0.741947\pi\)
0.724768 + 0.688993i \(0.241947\pi\)
\(24\) −4.82843 + 2.00000i −0.985599 + 0.408248i
\(25\) 4.53553 + 4.53553i 0.907107 + 0.907107i
\(26\) −1.00000 2.41421i −0.196116 0.473466i
\(27\) 4.41421 + 1.82843i 0.849516 + 0.351881i
\(28\) −2.00000 2.00000i −0.377964 0.377964i
\(29\) 1.12132 + 2.70711i 0.208224 + 0.502697i 0.993144 0.116900i \(-0.0372958\pi\)
−0.784920 + 0.619598i \(0.787296\pi\)
\(30\) −8.82843 −1.61184
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0.585786 0.101972
\(34\) −4.00000 −0.685994
\(35\) −1.82843 4.41421i −0.309061 0.746138i
\(36\) 0.585786 0.585786i 0.0976311 0.0976311i
\(37\) 1.70711 + 0.707107i 0.280647 + 0.116248i 0.518567 0.855037i \(-0.326466\pi\)
−0.237920 + 0.971285i \(0.576466\pi\)
\(38\) 3.24264 + 7.82843i 0.526026 + 1.26994i
\(39\) 2.41421 + 2.41421i 0.386584 + 0.386584i
\(40\) 3.65685 8.82843i 0.578199 1.39590i
\(41\) −5.82843 + 5.82843i −0.910247 + 0.910247i −0.996291 0.0860440i \(-0.972577\pi\)
0.0860440 + 0.996291i \(0.472577\pi\)
\(42\) 3.41421 + 1.41421i 0.526825 + 0.218218i
\(43\) 3.29289 7.94975i 0.502162 1.21233i −0.446143 0.894962i \(-0.647203\pi\)
0.948304 0.317363i \(-0.102797\pi\)
\(44\) −0.242641 + 0.585786i −0.0365795 + 0.0883106i
\(45\) 1.29289 0.535534i 0.192733 0.0798327i
\(46\) −0.242641 0.242641i −0.0357754 0.0357754i
\(47\) 11.6569i 1.70033i 0.526519 + 0.850163i \(0.323497\pi\)
−0.526519 + 0.850163i \(0.676503\pi\)
\(48\) 2.82843 + 6.82843i 0.408248 + 0.985599i
\(49\) 5.00000i 0.714286i
\(50\) 6.41421 6.41421i 0.907107 0.907107i
\(51\) 4.82843 2.00000i 0.676115 0.280056i
\(52\) −3.41421 + 1.41421i −0.473466 + 0.196116i
\(53\) 3.12132 7.53553i 0.428746 1.03509i −0.550939 0.834545i \(-0.685730\pi\)
0.979686 0.200540i \(-0.0642696\pi\)
\(54\) 2.58579 6.24264i 0.351881 0.849516i
\(55\) −0.757359 + 0.757359i −0.102122 + 0.102122i
\(56\) −2.82843 + 2.82843i −0.377964 + 0.377964i
\(57\) −7.82843 7.82843i −1.03690 1.03690i
\(58\) 3.82843 1.58579i 0.502697 0.208224i
\(59\) −6.12132 2.53553i −0.796928 0.330098i −0.0532027 0.998584i \(-0.516943\pi\)
−0.743725 + 0.668485i \(0.766943\pi\)
\(60\) 12.4853i 1.61184i
\(61\) 0.292893 + 0.707107i 0.0375011 + 0.0905357i 0.941520 0.336956i \(-0.109397\pi\)
−0.904019 + 0.427492i \(0.859397\pi\)
\(62\) 5.65685i 0.718421i
\(63\) −0.585786 −0.0738022
\(64\) −8.00000 −1.00000
\(65\) −6.24264 −0.774304
\(66\) 0.828427i 0.101972i
\(67\) 1.53553 + 3.70711i 0.187595 + 0.452895i 0.989496 0.144563i \(-0.0461775\pi\)
−0.801900 + 0.597458i \(0.796178\pi\)
\(68\) 5.65685i 0.685994i
\(69\) 0.414214 + 0.171573i 0.0498655 + 0.0206549i
\(70\) −6.24264 + 2.58579i −0.746138 + 0.309061i
\(71\) −0.171573 0.171573i −0.0203620 0.0203620i 0.696853 0.717214i \(-0.254583\pi\)
−0.717214 + 0.696853i \(0.754583\pi\)
\(72\) −0.828427 0.828427i −0.0976311 0.0976311i
\(73\) 7.00000 7.00000i 0.819288 0.819288i −0.166717 0.986005i \(-0.553317\pi\)
0.986005 + 0.166717i \(0.0533166\pi\)
\(74\) 1.00000 2.41421i 0.116248 0.280647i
\(75\) −4.53553 + 10.9497i −0.523718 + 1.26437i
\(76\) 11.0711 4.58579i 1.26994 0.526026i
\(77\) 0.414214 0.171573i 0.0472040 0.0195525i
\(78\) 3.41421 3.41421i 0.386584 0.386584i
\(79\) 6.00000i 0.675053i −0.941316 0.337526i \(-0.890410\pi\)
0.941316 0.337526i \(-0.109590\pi\)
\(80\) −12.4853 5.17157i −1.39590 0.578199i
\(81\) 10.0711i 1.11901i
\(82\) 8.24264 + 8.24264i 0.910247 + 0.910247i
\(83\) 6.12132 2.53553i 0.671902 0.278311i −0.0205350 0.999789i \(-0.506537\pi\)
0.692437 + 0.721478i \(0.256537\pi\)
\(84\) 2.00000 4.82843i 0.218218 0.526825i
\(85\) −3.65685 + 8.82843i −0.396642 + 0.957577i
\(86\) −11.2426 4.65685i −1.21233 0.502162i
\(87\) −3.82843 + 3.82843i −0.410450 + 0.410450i
\(88\) 0.828427 + 0.343146i 0.0883106 + 0.0365795i
\(89\) −2.65685 2.65685i −0.281626 0.281626i 0.552131 0.833757i \(-0.313815\pi\)
−0.833757 + 0.552131i \(0.813815\pi\)
\(90\) −0.757359 1.82843i −0.0798327 0.192733i
\(91\) 2.41421 + 1.00000i 0.253078 + 0.104828i
\(92\) −0.343146 + 0.343146i −0.0357754 + 0.0357754i
\(93\) −2.82843 6.82843i −0.293294 0.708075i
\(94\) 16.4853 1.70033
\(95\) 20.2426 2.07685
\(96\) 9.65685 4.00000i 0.985599 0.408248i
\(97\) −1.51472 −0.153796 −0.0768982 0.997039i \(-0.524502\pi\)
−0.0768982 + 0.997039i \(0.524502\pi\)
\(98\) −7.07107 −0.714286
\(99\) 0.0502525 + 0.121320i 0.00505057 + 0.0121932i
\(100\) −9.07107 9.07107i −0.907107 0.907107i
\(101\) 11.3640 + 4.70711i 1.13076 + 0.468375i 0.868038 0.496498i \(-0.165381\pi\)
0.262718 + 0.964873i \(0.415381\pi\)
\(102\) −2.82843 6.82843i −0.280056 0.676115i
\(103\) −7.48528 7.48528i −0.737547 0.737547i 0.234556 0.972103i \(-0.424636\pi\)
−0.972103 + 0.234556i \(0.924636\pi\)
\(104\) 2.00000 + 4.82843i 0.196116 + 0.473466i
\(105\) 6.24264 6.24264i 0.609219 0.609219i
\(106\) −10.6569 4.41421i −1.03509 0.428746i
\(107\) 0.121320 0.292893i 0.0117285 0.0283151i −0.917907 0.396796i \(-0.870122\pi\)
0.929635 + 0.368481i \(0.120122\pi\)
\(108\) −8.82843 3.65685i −0.849516 0.351881i
\(109\) −4.29289 + 1.77817i −0.411185 + 0.170318i −0.578680 0.815555i \(-0.696432\pi\)
0.167496 + 0.985873i \(0.446432\pi\)
\(110\) 1.07107 + 1.07107i 0.102122 + 0.102122i
\(111\) 3.41421i 0.324063i
\(112\) 4.00000 + 4.00000i 0.377964 + 0.377964i
\(113\) 17.6569i 1.66102i 0.557006 + 0.830509i \(0.311950\pi\)
−0.557006 + 0.830509i \(0.688050\pi\)
\(114\) −11.0711 + 11.0711i −1.03690 + 1.03690i
\(115\) −0.757359 + 0.313708i −0.0706241 + 0.0292535i
\(116\) −2.24264 5.41421i −0.208224 0.502697i
\(117\) −0.292893 + 0.707107i −0.0270780 + 0.0653720i
\(118\) −3.58579 + 8.65685i −0.330098 + 0.796928i
\(119\) 2.82843 2.82843i 0.259281 0.259281i
\(120\) 17.6569 1.61184
\(121\) 7.70711 + 7.70711i 0.700646 + 0.700646i
\(122\) 1.00000 0.414214i 0.0905357 0.0375011i
\(123\) −14.0711 5.82843i −1.26875 0.525532i
\(124\) 8.00000 0.718421
\(125\) −1.82843 4.41421i −0.163539 0.394819i
\(126\) 0.828427i 0.0738022i
\(127\) −20.9706 −1.86084 −0.930418 0.366499i \(-0.880556\pi\)
−0.930418 + 0.366499i \(0.880556\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 15.8995 1.39987
\(130\) 8.82843i 0.774304i
\(131\) −3.63604 8.77817i −0.317682 0.766953i −0.999376 0.0353153i \(-0.988756\pi\)
0.681694 0.731637i \(-0.261244\pi\)
\(132\) −1.17157 −0.101972
\(133\) −7.82843 3.24264i −0.678811 0.281173i
\(134\) 5.24264 2.17157i 0.452895 0.187595i
\(135\) −11.4142 11.4142i −0.982379 0.982379i
\(136\) 8.00000 0.685994
\(137\) 2.65685 2.65685i 0.226990 0.226990i −0.584444 0.811434i \(-0.698687\pi\)
0.811434 + 0.584444i \(0.198687\pi\)
\(138\) 0.242641 0.585786i 0.0206549 0.0498655i
\(139\) −5.19239 + 12.5355i −0.440413 + 1.06325i 0.535392 + 0.844604i \(0.320164\pi\)
−0.975804 + 0.218646i \(0.929836\pi\)
\(140\) 3.65685 + 8.82843i 0.309061 + 0.746138i
\(141\) −19.8995 + 8.24264i −1.67584 + 0.694156i
\(142\) −0.242641 + 0.242641i −0.0203620 + 0.0203620i
\(143\) 0.585786i 0.0489859i
\(144\) −1.17157 + 1.17157i −0.0976311 + 0.0976311i
\(145\) 9.89949i 0.822108i
\(146\) −9.89949 9.89949i −0.819288 0.819288i
\(147\) 8.53553 3.53553i 0.703999 0.291606i
\(148\) −3.41421 1.41421i −0.280647 0.116248i
\(149\) 5.60660 13.5355i 0.459311 1.10887i −0.509366 0.860550i \(-0.670120\pi\)
0.968677 0.248324i \(-0.0798799\pi\)
\(150\) 15.4853 + 6.41421i 1.26437 + 0.523718i
\(151\) 15.4853 15.4853i 1.26017 1.26017i 0.309166 0.951008i \(-0.399950\pi\)
0.951008 0.309166i \(-0.100050\pi\)
\(152\) −6.48528 15.6569i −0.526026 1.26994i
\(153\) 0.828427 + 0.828427i 0.0669744 + 0.0669744i
\(154\) −0.242641 0.585786i −0.0195525 0.0472040i
\(155\) 12.4853 + 5.17157i 1.00284 + 0.415391i
\(156\) −4.82843 4.82843i −0.386584 0.386584i
\(157\) 0.292893 + 0.707107i 0.0233754 + 0.0564333i 0.935136 0.354288i \(-0.115277\pi\)
−0.911761 + 0.410722i \(0.865277\pi\)
\(158\) −8.48528 −0.675053
\(159\) 15.0711 1.19521
\(160\) −7.31371 + 17.6569i −0.578199 + 1.39590i
\(161\) 0.343146 0.0270437
\(162\) 14.2426 1.11901
\(163\) 7.53553 + 18.1924i 0.590229 + 1.42494i 0.883282 + 0.468842i \(0.155329\pi\)
−0.293054 + 0.956096i \(0.594671\pi\)
\(164\) 11.6569 11.6569i 0.910247 0.910247i
\(165\) −1.82843 0.757359i −0.142343 0.0589603i
\(166\) −3.58579 8.65685i −0.278311 0.671902i
\(167\) 3.34315 + 3.34315i 0.258700 + 0.258700i 0.824525 0.565825i \(-0.191442\pi\)
−0.565825 + 0.824525i \(0.691442\pi\)
\(168\) −6.82843 2.82843i −0.526825 0.218218i
\(169\) −6.77817 + 6.77817i −0.521398 + 0.521398i
\(170\) 12.4853 + 5.17157i 0.957577 + 0.396642i
\(171\) 0.949747 2.29289i 0.0726290 0.175342i
\(172\) −6.58579 + 15.8995i −0.502162 + 1.21233i
\(173\) −1.12132 + 0.464466i −0.0852524 + 0.0353127i −0.424902 0.905239i \(-0.639691\pi\)
0.339650 + 0.940552i \(0.389691\pi\)
\(174\) 5.41421 + 5.41421i 0.410450 + 0.410450i
\(175\) 9.07107i 0.685708i
\(176\) 0.485281 1.17157i 0.0365795 0.0883106i
\(177\) 12.2426i 0.920213i
\(178\) −3.75736 + 3.75736i −0.281626 + 0.281626i
\(179\) −14.3640 + 5.94975i −1.07361 + 0.444705i −0.848264 0.529573i \(-0.822352\pi\)
−0.225349 + 0.974278i \(0.572352\pi\)
\(180\) −2.58579 + 1.07107i −0.192733 + 0.0798327i
\(181\) −2.19239 + 5.29289i −0.162959 + 0.393418i −0.984175 0.177200i \(-0.943296\pi\)
0.821216 + 0.570618i \(0.193296\pi\)
\(182\) 1.41421 3.41421i 0.104828 0.253078i
\(183\) −1.00000 + 1.00000i −0.0739221 + 0.0739221i
\(184\) 0.485281 + 0.485281i 0.0357754 + 0.0357754i
\(185\) −4.41421 4.41421i −0.324539 0.324539i
\(186\) −9.65685 + 4.00000i −0.708075 + 0.293294i
\(187\) −0.828427 0.343146i −0.0605806 0.0250933i
\(188\) 23.3137i 1.70033i
\(189\) 2.58579 + 6.24264i 0.188088 + 0.454085i
\(190\) 28.6274i 2.07685i
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) −5.65685 13.6569i −0.408248 0.985599i
\(193\) −18.4853 −1.33060 −0.665300 0.746576i \(-0.731696\pi\)
−0.665300 + 0.746576i \(0.731696\pi\)
\(194\) 2.14214i 0.153796i
\(195\) −4.41421 10.6569i −0.316108 0.763153i
\(196\) 10.0000i 0.714286i
\(197\) 17.3640 + 7.19239i 1.23713 + 0.512436i 0.902817 0.430025i \(-0.141495\pi\)
0.334314 + 0.942462i \(0.391495\pi\)
\(198\) 0.171573 0.0710678i 0.0121932 0.00505057i
\(199\) 17.9706 + 17.9706i 1.27390 + 1.27390i 0.944025 + 0.329875i \(0.107006\pi\)
0.329875 + 0.944025i \(0.392994\pi\)
\(200\) −12.8284 + 12.8284i −0.907107 + 0.907107i
\(201\) −5.24264 + 5.24264i −0.369787 + 0.369787i
\(202\) 6.65685 16.0711i 0.468375 1.13076i
\(203\) −1.58579 + 3.82843i −0.111300 + 0.268703i
\(204\) −9.65685 + 4.00000i −0.676115 + 0.280056i
\(205\) 25.7279 10.6569i 1.79692 0.744307i
\(206\) −10.5858 + 10.5858i −0.737547 + 0.737547i
\(207\) 0.100505i 0.00698558i
\(208\) 6.82843 2.82843i 0.473466 0.196116i
\(209\) 1.89949i 0.131391i
\(210\) −8.82843 8.82843i −0.609219 0.609219i
\(211\) 0.464466 0.192388i 0.0319752 0.0132445i −0.366639 0.930363i \(-0.619491\pi\)
0.398614 + 0.917119i \(0.369491\pi\)
\(212\) −6.24264 + 15.0711i −0.428746 + 1.03509i
\(213\) 0.171573 0.414214i 0.0117560 0.0283814i
\(214\) −0.414214 0.171573i −0.0283151 0.0117285i
\(215\) −20.5563 + 20.5563i −1.40193 + 1.40193i
\(216\) −5.17157 + 12.4853i −0.351881 + 0.849516i
\(217\) −4.00000 4.00000i −0.271538 0.271538i
\(218\) 2.51472 + 6.07107i 0.170318 + 0.411185i
\(219\) 16.8995 + 7.00000i 1.14196 + 0.473016i
\(220\) 1.51472 1.51472i 0.102122 0.102122i
\(221\) −2.00000 4.82843i −0.134535 0.324795i
\(222\) 4.82843 0.324063
\(223\) 12.9706 0.868573 0.434287 0.900775i \(-0.357001\pi\)
0.434287 + 0.900775i \(0.357001\pi\)
\(224\) 5.65685 5.65685i 0.377964 0.377964i
\(225\) −2.65685 −0.177124
\(226\) 24.9706 1.66102
\(227\) −2.60660 6.29289i −0.173006 0.417674i 0.813464 0.581616i \(-0.197579\pi\)
−0.986470 + 0.163942i \(0.947579\pi\)
\(228\) 15.6569 + 15.6569i 1.03690 + 1.03690i
\(229\) −24.7782 10.2635i −1.63739 0.678228i −0.641357 0.767242i \(-0.721628\pi\)
−0.996030 + 0.0890139i \(0.971628\pi\)
\(230\) 0.443651 + 1.07107i 0.0292535 + 0.0706241i
\(231\) 0.585786 + 0.585786i 0.0385419 + 0.0385419i
\(232\) −7.65685 + 3.17157i −0.502697 + 0.208224i
\(233\) 8.65685 8.65685i 0.567129 0.567129i −0.364194 0.931323i \(-0.618655\pi\)
0.931323 + 0.364194i \(0.118655\pi\)
\(234\) 1.00000 + 0.414214i 0.0653720 + 0.0270780i
\(235\) 15.0711 36.3848i 0.983128 2.37348i
\(236\) 12.2426 + 5.07107i 0.796928 + 0.330098i
\(237\) 10.2426 4.24264i 0.665331 0.275589i
\(238\) −4.00000 4.00000i −0.259281 0.259281i
\(239\) 17.3137i 1.11993i −0.828516 0.559965i \(-0.810814\pi\)
0.828516 0.559965i \(-0.189186\pi\)
\(240\) 24.9706i 1.61184i
\(241\) 8.48528i 0.546585i −0.961931 0.273293i \(-0.911887\pi\)
0.961931 0.273293i \(-0.0881127\pi\)
\(242\) 10.8995 10.8995i 0.700646 0.700646i
\(243\) −3.94975 + 1.63604i −0.253376 + 0.104952i
\(244\) −0.585786 1.41421i −0.0375011 0.0905357i
\(245\) −6.46447 + 15.6066i −0.413000 + 0.997069i
\(246\) −8.24264 + 19.8995i −0.525532 + 1.26875i
\(247\) −7.82843 + 7.82843i −0.498111 + 0.498111i
\(248\) 11.3137i 0.718421i
\(249\) 8.65685 + 8.65685i 0.548606 + 0.548606i
\(250\) −6.24264 + 2.58579i −0.394819 + 0.163539i
\(251\) −14.6066 6.05025i −0.921961 0.381889i −0.129338 0.991601i \(-0.541285\pi\)
−0.792623 + 0.609712i \(0.791285\pi\)
\(252\) 1.17157 0.0738022
\(253\) −0.0294373 0.0710678i −0.00185070 0.00446800i
\(254\) 29.6569i 1.86084i
\(255\) −17.6569 −1.10572
\(256\) 16.0000 1.00000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 22.4853i 1.39987i
\(259\) 1.00000 + 2.41421i 0.0621370 + 0.150012i
\(260\) 12.4853 0.774304
\(261\) −1.12132 0.464466i −0.0694080 0.0287497i
\(262\) −12.4142 + 5.14214i −0.766953 + 0.317682i
\(263\) −0.171573 0.171573i −0.0105796 0.0105796i 0.701797 0.712377i \(-0.252381\pi\)
−0.712377 + 0.701797i \(0.752381\pi\)
\(264\) 1.65685i 0.101972i
\(265\) −19.4853 + 19.4853i −1.19697 + 1.19697i
\(266\) −4.58579 + 11.0711i −0.281173 + 0.678811i
\(267\) 2.65685 6.41421i 0.162597 0.392543i
\(268\) −3.07107 7.41421i −0.187595 0.452895i
\(269\) 4.87868 2.02082i 0.297458 0.123211i −0.228963 0.973435i \(-0.573533\pi\)
0.526421 + 0.850224i \(0.323533\pi\)
\(270\) −16.1421 + 16.1421i −0.982379 + 0.982379i
\(271\) 18.0000i 1.09342i −0.837321 0.546711i \(-0.815880\pi\)
0.837321 0.546711i \(-0.184120\pi\)
\(272\) 11.3137i 0.685994i
\(273\) 4.82843i 0.292230i
\(274\) −3.75736 3.75736i −0.226990 0.226990i
\(275\) 1.87868 0.778175i 0.113289 0.0469257i
\(276\) −0.828427 0.343146i −0.0498655 0.0206549i
\(277\) 0.292893 0.707107i 0.0175982 0.0424859i −0.914836 0.403825i \(-0.867680\pi\)
0.932434 + 0.361339i \(0.117680\pi\)
\(278\) 17.7279 + 7.34315i 1.06325 + 0.440413i
\(279\) 1.17157 1.17157i 0.0701402 0.0701402i
\(280\) 12.4853 5.17157i 0.746138 0.309061i
\(281\) −6.17157 6.17157i −0.368165 0.368165i 0.498643 0.866808i \(-0.333832\pi\)
−0.866808 + 0.498643i \(0.833832\pi\)
\(282\) 11.6569 + 28.1421i 0.694156 + 1.67584i
\(283\) −9.77817 4.05025i −0.581252 0.240763i 0.0726300 0.997359i \(-0.476861\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 0.343146 + 0.343146i 0.0203620 + 0.0203620i
\(285\) 14.3137 + 34.5563i 0.847871 + 2.04694i
\(286\) −0.828427 −0.0489859
\(287\) −11.6569 −0.688082
\(288\) 1.65685 + 1.65685i 0.0976311 + 0.0976311i
\(289\) 9.00000 0.529412
\(290\) −14.0000 −0.822108
\(291\) −1.07107 2.58579i −0.0627871 0.151581i
\(292\) −14.0000 + 14.0000i −0.819288 + 0.819288i
\(293\) −11.6066 4.80761i −0.678065 0.280864i 0.0169528 0.999856i \(-0.494603\pi\)
−0.695018 + 0.718993i \(0.744603\pi\)
\(294\) −5.00000 12.0711i −0.291606 0.703999i
\(295\) 15.8284 + 15.8284i 0.921567 + 0.921567i
\(296\) −2.00000 + 4.82843i −0.116248 + 0.280647i
\(297\) 1.07107 1.07107i 0.0621497 0.0621497i
\(298\) −19.1421 7.92893i −1.10887 0.459311i
\(299\) 0.171573 0.414214i 0.00992232 0.0239546i
\(300\) 9.07107 21.8995i 0.523718 1.26437i
\(301\) 11.2426 4.65685i 0.648015 0.268417i
\(302\) −21.8995 21.8995i −1.26017 1.26017i
\(303\) 22.7279i 1.30569i
\(304\) −22.1421 + 9.17157i −1.26994 + 0.526026i
\(305\) 2.58579i 0.148062i
\(306\) 1.17157 1.17157i 0.0669744 0.0669744i
\(307\) 2.94975 1.22183i 0.168351 0.0697333i −0.296916 0.954904i \(-0.595958\pi\)
0.465267 + 0.885170i \(0.345958\pi\)
\(308\) −0.828427 + 0.343146i −0.0472040 + 0.0195525i
\(309\) 7.48528 18.0711i 0.425823 1.02803i
\(310\) 7.31371 17.6569i 0.415391 1.00284i
\(311\) 8.65685 8.65685i 0.490885 0.490885i −0.417700 0.908585i \(-0.637164\pi\)
0.908585 + 0.417700i \(0.137164\pi\)
\(312\) −6.82843 + 6.82843i −0.386584 + 0.386584i
\(313\) 9.48528 + 9.48528i 0.536140 + 0.536140i 0.922393 0.386253i \(-0.126231\pi\)
−0.386253 + 0.922393i \(0.626231\pi\)
\(314\) 1.00000 0.414214i 0.0564333 0.0233754i
\(315\) 1.82843 + 0.757359i 0.103020 + 0.0426724i
\(316\) 12.0000i 0.675053i
\(317\) 4.63604 + 11.1924i 0.260386 + 0.628627i 0.998962 0.0455425i \(-0.0145016\pi\)
−0.738577 + 0.674170i \(0.764502\pi\)
\(318\) 21.3137i 1.19521i
\(319\) 0.928932 0.0520102
\(320\) 24.9706 + 10.3431i 1.39590 + 0.578199i
\(321\) 0.585786 0.0326954
\(322\) 0.485281i 0.0270437i
\(323\) 6.48528 + 15.6569i 0.360851 + 0.871171i
\(324\) 20.1421i 1.11901i
\(325\) 10.9497 + 4.53553i 0.607383 + 0.251586i
\(326\) 25.7279 10.6569i 1.42494 0.590229i
\(327\) −6.07107 6.07107i −0.335731 0.335731i
\(328\) −16.4853 16.4853i −0.910247 0.910247i
\(329\) −11.6569 + 11.6569i −0.642663 + 0.642663i
\(330\) −1.07107 + 2.58579i −0.0589603 + 0.142343i
\(331\) −2.70711 + 6.53553i −0.148796 + 0.359225i −0.980650 0.195769i \(-0.937280\pi\)
0.831854 + 0.554995i \(0.187280\pi\)
\(332\) −12.2426 + 5.07107i −0.671902 + 0.278311i
\(333\) −0.707107 + 0.292893i −0.0387492 + 0.0160504i
\(334\) 4.72792 4.72792i 0.258700 0.258700i
\(335\) 13.5563i 0.740662i
\(336\) −4.00000 + 9.65685i −0.218218 + 0.526825i
\(337\) 16.9706i 0.924445i −0.886764 0.462223i \(-0.847052\pi\)
0.886764 0.462223i \(-0.152948\pi\)
\(338\) 9.58579 + 9.58579i 0.521398 + 0.521398i
\(339\) −30.1421 + 12.4853i −1.63710 + 0.678107i
\(340\) 7.31371 17.6569i 0.396642 0.957577i
\(341\) −0.485281 + 1.17157i −0.0262795 + 0.0634442i
\(342\) −3.24264 1.34315i −0.175342 0.0726290i
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 22.4853 + 9.31371i 1.21233 + 0.502162i
\(345\) −1.07107 1.07107i −0.0576644 0.0576644i
\(346\) 0.656854 + 1.58579i 0.0353127 + 0.0852524i
\(347\) 14.3640 + 5.94975i 0.771098 + 0.319399i 0.733317 0.679887i \(-0.237971\pi\)
0.0377808 + 0.999286i \(0.487971\pi\)
\(348\) 7.65685 7.65685i 0.410450 0.410450i
\(349\) −10.6777 25.7782i −0.571563 1.37987i −0.900224 0.435426i \(-0.856598\pi\)
0.328662 0.944448i \(-0.393402\pi\)
\(350\) 12.8284 0.685708
\(351\) 8.82843 0.471227
\(352\) −1.65685 0.686292i −0.0883106 0.0365795i
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) −17.3137 −0.920213
\(355\) 0.313708 + 0.757359i 0.0166499 + 0.0401965i
\(356\) 5.31371 + 5.31371i 0.281626 + 0.281626i
\(357\) 6.82843 + 2.82843i 0.361399 + 0.149696i
\(358\) 8.41421 + 20.3137i 0.444705 + 1.07361i
\(359\) −12.1716 12.1716i −0.642391 0.642391i 0.308752 0.951143i \(-0.400089\pi\)
−0.951143 + 0.308752i \(0.900089\pi\)
\(360\) 1.51472 + 3.65685i 0.0798327 + 0.192733i
\(361\) 11.9497 11.9497i 0.628934 0.628934i
\(362\) 7.48528 + 3.10051i 0.393418 + 0.162959i
\(363\) −7.70711 + 18.6066i −0.404518 + 0.976593i
\(364\) −4.82843 2.00000i −0.253078 0.104828i
\(365\) −30.8995 + 12.7990i −1.61735 + 0.669930i
\(366\) 1.41421 + 1.41421i 0.0739221 + 0.0739221i
\(367\) 6.00000i 0.313197i 0.987662 + 0.156599i \(0.0500529\pi\)
−0.987662 + 0.156599i \(0.949947\pi\)
\(368\) 0.686292 0.686292i 0.0357754 0.0357754i
\(369\) 3.41421i 0.177737i
\(370\) −6.24264 + 6.24264i −0.324539 + 0.324539i
\(371\) 10.6569 4.41421i 0.553276 0.229175i
\(372\) 5.65685 + 13.6569i 0.293294 + 0.708075i
\(373\) −11.7071 + 28.2635i −0.606171 + 1.46343i 0.260962 + 0.965349i \(0.415960\pi\)
−0.867133 + 0.498077i \(0.834040\pi\)
\(374\) −0.485281 + 1.17157i −0.0250933 + 0.0605806i
\(375\) 6.24264 6.24264i 0.322369 0.322369i
\(376\) −32.9706 −1.70033
\(377\) 3.82843 + 3.82843i 0.197174 + 0.197174i
\(378\) 8.82843 3.65685i 0.454085 0.188088i
\(379\) 21.6777 + 8.97918i 1.11351 + 0.461230i 0.862144 0.506663i \(-0.169121\pi\)
0.251363 + 0.967893i \(0.419121\pi\)
\(380\) −40.4853 −2.07685
\(381\) −14.8284 35.7990i −0.759683 1.83404i
\(382\) 16.9706i 0.868290i
\(383\) 16.9706 0.867155 0.433578 0.901116i \(-0.357251\pi\)
0.433578 + 0.901116i \(0.357251\pi\)
\(384\) −19.3137 + 8.00000i −0.985599 + 0.408248i
\(385\) −1.51472 −0.0771972
\(386\) 26.1421i 1.33060i
\(387\) 1.36396 + 3.29289i 0.0693340 + 0.167387i
\(388\) 3.02944 0.153796
\(389\) −29.6066 12.2635i −1.50111 0.621782i −0.527413 0.849609i \(-0.676838\pi\)
−0.973702 + 0.227827i \(0.926838\pi\)
\(390\) −15.0711 + 6.24264i −0.763153 + 0.316108i
\(391\) −0.485281 0.485281i −0.0245417 0.0245417i
\(392\) 14.1421 0.714286
\(393\) 12.4142 12.4142i 0.626214 0.626214i
\(394\) 10.1716 24.5563i 0.512436 1.23713i
\(395\) −7.75736 + 18.7279i −0.390315 + 0.942304i
\(396\) −0.100505 0.242641i −0.00505057 0.0121932i
\(397\) −24.7782 + 10.2635i −1.24358 + 0.515108i −0.904832 0.425769i \(-0.860004\pi\)
−0.338749 + 0.940877i \(0.610004\pi\)
\(398\) 25.4142 25.4142i 1.27390 1.27390i
\(399\) 15.6569i 0.783823i
\(400\) 18.1421 + 18.1421i 0.907107 + 0.907107i
\(401\) 2.82843i 0.141245i −0.997503 0.0706225i \(-0.977501\pi\)
0.997503 0.0706225i \(-0.0224986\pi\)
\(402\) 7.41421 + 7.41421i 0.369787 + 0.369787i
\(403\) −6.82843 + 2.82843i −0.340148 + 0.140894i
\(404\) −22.7279 9.41421i −1.13076 0.468375i
\(405\) 13.0208 31.4350i 0.647010 1.56202i
\(406\) 5.41421 + 2.24264i 0.268703 + 0.111300i
\(407\) 0.414214 0.414214i 0.0205318 0.0205318i
\(408\) 5.65685 + 13.6569i 0.280056 + 0.676115i
\(409\) 4.51472 + 4.51472i 0.223238 + 0.223238i 0.809861 0.586622i \(-0.199543\pi\)
−0.586622 + 0.809861i \(0.699543\pi\)
\(410\) −15.0711 36.3848i −0.744307 1.79692i
\(411\) 6.41421 + 2.65685i 0.316390 + 0.131053i
\(412\) 14.9706 + 14.9706i 0.737547 + 0.737547i
\(413\) −3.58579 8.65685i −0.176445 0.425976i
\(414\) 0.142136 0.00698558
\(415\) −22.3848 −1.09883
\(416\) −4.00000 9.65685i −0.196116 0.473466i
\(417\) −25.0711 −1.22774
\(418\) 2.68629 0.131391
\(419\) −8.60660 20.7782i −0.420460 1.01508i −0.982212 0.187775i \(-0.939873\pi\)
0.561752 0.827306i \(-0.310127\pi\)
\(420\) −12.4853 + 12.4853i −0.609219 + 0.609219i
\(421\) 7.70711 + 3.19239i 0.375621 + 0.155587i 0.562504 0.826795i \(-0.309838\pi\)
−0.186882 + 0.982382i \(0.559838\pi\)
\(422\) −0.272078 0.656854i −0.0132445 0.0319752i
\(423\) −3.41421 3.41421i −0.166005 0.166005i
\(424\) 21.3137 + 8.82843i 1.03509 + 0.428746i
\(425\) 12.8284 12.8284i 0.622270 0.622270i
\(426\) −0.585786 0.242641i −0.0283814 0.0117560i
\(427\) −0.414214 + 1.00000i −0.0200452 + 0.0483934i
\(428\) −0.242641 + 0.585786i −0.0117285 + 0.0283151i
\(429\) 1.00000 0.414214i 0.0482805 0.0199984i
\(430\) 29.0711 + 29.0711i 1.40193 + 1.40193i
\(431\) 23.6569i 1.13951i 0.821814 + 0.569755i \(0.192962\pi\)
−0.821814 + 0.569755i \(0.807038\pi\)
\(432\) 17.6569 + 7.31371i 0.849516 + 0.351881i
\(433\) 32.4853i 1.56114i 0.625067 + 0.780571i \(0.285072\pi\)
−0.625067 + 0.780571i \(0.714928\pi\)
\(434\) −5.65685 + 5.65685i −0.271538 + 0.271538i
\(435\) 16.8995 7.00000i 0.810269 0.335624i
\(436\) 8.58579 3.55635i 0.411185 0.170318i
\(437\) −0.556349 + 1.34315i −0.0266138 + 0.0642514i
\(438\) 9.89949 23.8995i 0.473016 1.14196i
\(439\) −17.0000 + 17.0000i −0.811366 + 0.811366i −0.984839 0.173473i \(-0.944501\pi\)
0.173473 + 0.984839i \(0.444501\pi\)
\(440\) −2.14214 2.14214i −0.102122 0.102122i
\(441\) 1.46447 + 1.46447i 0.0697365 + 0.0697365i
\(442\) −6.82843 + 2.82843i −0.324795 + 0.134535i
\(443\) −20.6066 8.53553i −0.979049 0.405535i −0.164976 0.986298i \(-0.552755\pi\)
−0.814073 + 0.580762i \(0.802755\pi\)
\(444\) 6.82843i 0.324063i
\(445\) 4.85786 + 11.7279i 0.230285 + 0.555957i
\(446\) 18.3431i 0.868573i
\(447\) 27.0711 1.28042
\(448\) −8.00000 8.00000i −0.377964 0.377964i
\(449\) 31.4558 1.48449 0.742247 0.670127i \(-0.233760\pi\)
0.742247 + 0.670127i \(0.233760\pi\)
\(450\) 3.75736i 0.177124i
\(451\) 1.00000 + 2.41421i 0.0470882 + 0.113681i
\(452\) 35.3137i 1.66102i
\(453\) 37.3848 + 15.4853i 1.75649 + 0.727562i
\(454\) −8.89949 + 3.68629i −0.417674 + 0.173006i
\(455\) −6.24264 6.24264i −0.292660 0.292660i
\(456\) 22.1421 22.1421i 1.03690 1.03690i
\(457\) 9.48528 9.48528i 0.443703 0.443703i −0.449552 0.893254i \(-0.648416\pi\)
0.893254 + 0.449552i \(0.148416\pi\)
\(458\) −14.5147 + 35.0416i −0.678228 + 1.63739i
\(459\) 5.17157 12.4853i 0.241388 0.582763i
\(460\) 1.51472 0.627417i 0.0706241 0.0292535i
\(461\) 13.3640 5.53553i 0.622422 0.257816i −0.0491076 0.998793i \(-0.515638\pi\)
0.671529 + 0.740978i \(0.265638\pi\)
\(462\) 0.828427 0.828427i 0.0385419 0.0385419i
\(463\) 10.9706i 0.509845i 0.966961 + 0.254923i \(0.0820500\pi\)
−0.966961 + 0.254923i \(0.917950\pi\)
\(464\) 4.48528 + 10.8284i 0.208224 + 0.502697i
\(465\) 24.9706i 1.15798i
\(466\) −12.2426 12.2426i −0.567129 0.567129i
\(467\) 29.0919 12.0503i 1.34621 0.557619i 0.410977 0.911646i \(-0.365188\pi\)
0.935235 + 0.354027i \(0.115188\pi\)
\(468\) 0.585786 1.41421i 0.0270780 0.0653720i
\(469\) −2.17157 + 5.24264i −0.100274 + 0.242083i
\(470\) −51.4558 21.3137i −2.37348 0.983128i
\(471\) −1.00000 + 1.00000i −0.0460776 + 0.0460776i
\(472\) 7.17157 17.3137i 0.330098 0.796928i
\(473\) −1.92893 1.92893i −0.0886924 0.0886924i
\(474\) −6.00000 14.4853i −0.275589 0.665331i
\(475\) −35.5061 14.7071i −1.62913 0.674808i
\(476\) −5.65685 + 5.65685i −0.259281 + 0.259281i
\(477\) 1.29289 + 3.12132i 0.0591975 + 0.142915i
\(478\) −24.4853 −1.11993
\(479\) −4.97056 −0.227111 −0.113555 0.993532i \(-0.536224\pi\)
−0.113555 + 0.993532i \(0.536224\pi\)
\(480\) −35.3137 −1.61184
\(481\) 3.41421 0.155675
\(482\) −12.0000 −0.546585
\(483\) 0.242641 + 0.585786i 0.0110405 + 0.0266542i
\(484\) −15.4142 15.4142i −0.700646 0.700646i
\(485\) 4.72792 + 1.95837i 0.214684 + 0.0889250i
\(486\) 2.31371 + 5.58579i 0.104952 + 0.253376i
\(487\) −11.0000 11.0000i −0.498458 0.498458i 0.412500 0.910958i \(-0.364656\pi\)
−0.910958 + 0.412500i \(0.864656\pi\)
\(488\) −2.00000 + 0.828427i −0.0905357 + 0.0375011i
\(489\) −25.7279 + 25.7279i −1.16346 + 1.16346i
\(490\) 22.0711 + 9.14214i 0.997069 + 0.413000i
\(491\) −7.33452 + 17.7071i −0.331002 + 0.799111i 0.667511 + 0.744600i \(0.267360\pi\)
−0.998513 + 0.0545104i \(0.982640\pi\)
\(492\) 28.1421 + 11.6569i 1.26875 + 0.525532i
\(493\) 7.65685 3.17157i 0.344847 0.142840i
\(494\) 11.0711 + 11.0711i 0.498111 + 0.498111i
\(495\) 0.443651i 0.0199406i
\(496\) −16.0000 −0.718421
\(497\) 0.343146i 0.0153922i
\(498\) 12.2426 12.2426i 0.548606 0.548606i
\(499\) 8.94975 3.70711i 0.400646 0.165953i −0.173256 0.984877i \(-0.555429\pi\)
0.573902 + 0.818924i \(0.305429\pi\)
\(500\) 3.65685 + 8.82843i 0.163539 + 0.394819i
\(501\) −3.34315 + 8.07107i −0.149361 + 0.360589i
\(502\) −8.55635 + 20.6569i −0.381889 + 0.921961i
\(503\) 17.1421 17.1421i 0.764330 0.764330i −0.212772 0.977102i \(-0.568249\pi\)
0.977102 + 0.212772i \(0.0682491\pi\)
\(504\) 1.65685i 0.0738022i
\(505\) −29.3848 29.3848i −1.30761 1.30761i
\(506\) −0.100505 + 0.0416306i −0.00446800 + 0.00185070i
\(507\) −16.3640 6.77817i −0.726749 0.301029i
\(508\) 41.9411 1.86084
\(509\) 12.0919 + 29.1924i 0.535963 + 1.29393i 0.927519 + 0.373776i \(0.121937\pi\)
−0.391556 + 0.920154i \(0.628063\pi\)
\(510\) 24.9706i 1.10572i
\(511\) 14.0000 0.619324
\(512\) 22.6274i 1.00000i
\(513\) −28.6274 −1.26393
\(514\) 8.48528i 0.374270i
\(515\) 13.6863 + 33.0416i 0.603090 + 1.45599i
\(516\) −31.7990 −1.39987
\(517\) 3.41421 + 1.41421i 0.150157 + 0.0621970i
\(518\) 3.41421 1.41421i 0.150012 0.0621370i
\(519\) −1.58579 1.58579i −0.0696083 0.0696083i
\(520\) 17.6569i 0.774304i
\(521\) 14.6569 14.6569i 0.642128 0.642128i −0.308950 0.951078i \(-0.599978\pi\)
0.951078 + 0.308950i \(0.0999775\pi\)
\(522\) −0.656854 + 1.58579i −0.0287497 + 0.0694080i
\(523\) 0.807612 1.94975i 0.0353144 0.0852565i −0.905238 0.424904i \(-0.860308\pi\)
0.940553 + 0.339648i \(0.110308\pi\)
\(524\) 7.27208 + 17.5563i 0.317682 + 0.766953i
\(525\) −15.4853 + 6.41421i −0.675833 + 0.279939i
\(526\) −0.242641 + 0.242641i −0.0105796 + 0.0105796i
\(527\) 11.3137i 0.492833i
\(528\) 2.34315 0.101972
\(529\) 22.9411i 0.997440i
\(530\) 27.5563 + 27.5563i 1.19697 + 1.19697i
\(531\) 2.53553 1.05025i 0.110033 0.0455771i
\(532\) 15.6569 + 6.48528i 0.678811 + 0.281173i
\(533\) −5.82843 + 14.0711i −0.252457 + 0.609486i
\(534\) −9.07107 3.75736i −0.392543 0.162597i
\(535\) −0.757359 + 0.757359i −0.0327435 + 0.0327435i
\(536\) −10.4853 + 4.34315i −0.452895 + 0.187595i
\(537\) −20.3137 20.3137i −0.876601 0.876601i
\(538\) −2.85786 6.89949i −0.123211 0.297458i
\(539\) −1.46447 0.606602i −0.0630790 0.0261282i
\(540\) 22.8284 + 22.8284i 0.982379 + 0.982379i
\(541\) 5.26346 + 12.7071i 0.226294 + 0.546321i 0.995721 0.0924135i \(-0.0294582\pi\)
−0.769427 + 0.638735i \(0.779458\pi\)
\(542\) −25.4558 −1.09342
\(543\) −10.5858 −0.454280
\(544\) −16.0000 −0.685994
\(545\) 15.6985 0.672449
\(546\) 6.82843 0.292230
\(547\) −10.4645 25.2635i −0.447428 1.08019i −0.973282 0.229612i \(-0.926254\pi\)
0.525854 0.850575i \(-0.323746\pi\)
\(548\) −5.31371 + 5.31371i −0.226990 + 0.226990i
\(549\) −0.292893 0.121320i −0.0125004 0.00517783i
\(550\) −1.10051 2.65685i −0.0469257 0.113289i
\(551\) −12.4142 12.4142i −0.528863 0.528863i
\(552\) −0.485281 + 1.17157i −0.0206549 + 0.0498655i
\(553\) 6.00000 6.00000i 0.255146 0.255146i
\(554\) −1.00000 0.414214i −0.0424859 0.0175982i
\(555\) 4.41421 10.6569i 0.187373 0.452358i
\(556\) 10.3848 25.0711i 0.440413 1.06325i
\(557\) 10.8787 4.50610i 0.460944 0.190929i −0.140113 0.990136i \(-0.544746\pi\)
0.601057 + 0.799206i \(0.294746\pi\)
\(558\) −1.65685 1.65685i −0.0701402 0.0701402i
\(559\) 15.8995i 0.672477i
\(560\) −7.31371 17.6569i −0.309061 0.746138i
\(561\) 1.65685i 0.0699524i
\(562\) −8.72792 + 8.72792i −0.368165 + 0.368165i
\(563\) 12.1213 5.02082i 0.510853 0.211602i −0.112341 0.993670i \(-0.535835\pi\)
0.623194 + 0.782068i \(0.285835\pi\)
\(564\) 39.7990 16.4853i 1.67584 0.694156i
\(565\) 22.8284 55.1127i 0.960399 2.31861i
\(566\) −5.72792 + 13.8284i −0.240763 + 0.581252i
\(567\) −10.0711 + 10.0711i −0.422945 + 0.422945i
\(568\) 0.485281 0.485281i 0.0203620 0.0203620i
\(569\) 3.34315 + 3.34315i 0.140152 + 0.140152i 0.773702 0.633550i \(-0.218403\pi\)
−0.633550 + 0.773702i \(0.718403\pi\)
\(570\) 48.8701 20.2426i 2.04694 0.847871i
\(571\) −1.29289 0.535534i −0.0541059 0.0224114i 0.355466 0.934689i \(-0.384322\pi\)
−0.409572 + 0.912278i \(0.634322\pi\)
\(572\) 1.17157i 0.0489859i
\(573\) −8.48528 20.4853i −0.354478 0.855785i
\(574\) 16.4853i 0.688082i
\(575\) 1.55635 0.0649042
\(576\) 2.34315 2.34315i 0.0976311 0.0976311i
\(577\) −14.9706 −0.623233 −0.311616 0.950208i \(-0.600870\pi\)
−0.311616 + 0.950208i \(0.600870\pi\)
\(578\) 12.7279i 0.529412i
\(579\) −13.0711 31.5563i −0.543215 1.31144i
\(580\) 19.7990i 0.822108i
\(581\) 8.65685 + 3.58579i 0.359147 + 0.148763i
\(582\) −3.65685 + 1.51472i −0.151581 + 0.0627871i
\(583\) −1.82843 1.82843i −0.0757257 0.0757257i
\(584\) 19.7990 + 19.7990i 0.819288 + 0.819288i
\(585\) 1.82843 1.82843i 0.0755962 0.0755962i
\(586\) −6.79899 + 16.4142i −0.280864 + 0.678065i
\(587\) 8.60660 20.7782i 0.355232 0.857607i −0.640724 0.767771i \(-0.721366\pi\)
0.995957 0.0898359i \(-0.0286342\pi\)
\(588\) −17.0711 + 7.07107i −0.703999 + 0.291606i
\(589\) 22.1421 9.17157i 0.912351 0.377908i
\(590\) 22.3848 22.3848i 0.921567 0.921567i
\(591\) 34.7279i 1.42852i
\(592\) 6.82843 + 2.82843i 0.280647 + 0.116248i
\(593\) 28.2843i 1.16150i −0.814083 0.580748i \(-0.802760\pi\)
0.814083 0.580748i \(-0.197240\pi\)
\(594\) −1.51472 1.51472i −0.0621497 0.0621497i
\(595\) −12.4853 + 5.17157i −0.511847 + 0.212014i
\(596\) −11.2132 + 27.0711i −0.459311 + 1.10887i
\(597\) −17.9706 + 43.3848i −0.735486 + 1.77562i
\(598\) −0.585786 0.242641i −0.0239546 0.00992232i
\(599\) −15.3431 + 15.3431i −0.626904 + 0.626904i −0.947288 0.320384i \(-0.896188\pi\)
0.320384 + 0.947288i \(0.396188\pi\)
\(600\) −30.9706 12.8284i −1.26437 0.523718i
\(601\) 11.9706 + 11.9706i 0.488289 + 0.488289i 0.907766 0.419477i \(-0.137786\pi\)
−0.419477 + 0.907766i \(0.637786\pi\)
\(602\) −6.58579 15.8995i −0.268417 0.648015i
\(603\) −1.53553 0.636039i −0.0625318 0.0259015i
\(604\) −30.9706 + 30.9706i −1.26017 + 1.26017i
\(605\) −14.0919 34.0208i −0.572917 1.38314i
\(606\) 32.1421 1.30569
\(607\) 0.970563 0.0393939 0.0196970 0.999806i \(-0.493730\pi\)
0.0196970 + 0.999806i \(0.493730\pi\)
\(608\) 12.9706 + 31.3137i 0.526026 + 1.26994i
\(609\) −7.65685 −0.310271
\(610\) −3.65685 −0.148062
\(611\) 8.24264 + 19.8995i 0.333462 + 0.805047i
\(612\) −1.65685 1.65685i −0.0669744 0.0669744i
\(613\) 36.6777 + 15.1924i 1.48140 + 0.613615i 0.969425 0.245387i \(-0.0789151\pi\)
0.511972 + 0.859002i \(0.328915\pi\)
\(614\) −1.72792 4.17157i −0.0697333 0.168351i
\(615\) 36.3848 + 36.3848i 1.46718 + 1.46718i
\(616\) 0.485281 + 1.17157i 0.0195525 + 0.0472040i
\(617\) −16.7990 + 16.7990i −0.676302 + 0.676302i −0.959161 0.282859i \(-0.908717\pi\)
0.282859 + 0.959161i \(0.408717\pi\)
\(618\) −25.5563 10.5858i −1.02803 0.425823i
\(619\) −6.22183 + 15.0208i −0.250076 + 0.603738i −0.998210 0.0598107i \(-0.980950\pi\)
0.748133 + 0.663548i \(0.230950\pi\)
\(620\) −24.9706 10.3431i −1.00284 0.415391i
\(621\) 1.07107 0.443651i 0.0429805 0.0178031i
\(622\) −12.2426 12.2426i −0.490885 0.490885i
\(623\) 5.31371i 0.212889i
\(624\) 9.65685 + 9.65685i 0.386584 + 0.386584i
\(625\) 15.9289i 0.637157i
\(626\) 13.4142 13.4142i 0.536140 0.536140i
\(627\) −3.24264 + 1.34315i −0.129499 + 0.0536401i
\(628\) −0.585786 1.41421i −0.0233754 0.0564333i
\(629\) 2.00000 4.82843i 0.0797452 0.192522i
\(630\) 1.07107 2.58579i 0.0426724 0.103020i
\(631\) −18.4558 + 18.4558i −0.734716 + 0.734716i −0.971550 0.236834i \(-0.923890\pi\)
0.236834 + 0.971550i \(0.423890\pi\)
\(632\) 16.9706 0.675053
\(633\) 0.656854 + 0.656854i 0.0261076 + 0.0261076i
\(634\) 15.8284 6.55635i 0.628627 0.260386i
\(635\) 65.4558 + 27.1127i 2.59754 + 1.07593i
\(636\) −30.1421 −1.19521
\(637\) −3.53553 8.53553i −0.140083 0.338190i
\(638\) 1.31371i 0.0520102i
\(639\) 0.100505 0.00397592
\(640\) 14.6274 35.3137i 0.578199 1.39590i
\(641\) −43.4558 −1.71640 −0.858201 0.513313i \(-0.828418\pi\)
−0.858201 + 0.513313i \(0.828418\pi\)
\(642\) 0.828427i 0.0326954i
\(643\) −15.4350 37.2635i −0.608698 1.46953i −0.864417 0.502776i \(-0.832312\pi\)
0.255719 0.966751i \(-0.417688\pi\)
\(644\) −0.686292 −0.0270437
\(645\) −49.6274 20.5563i −1.95408 0.809405i
\(646\) 22.1421 9.17157i 0.871171 0.360851i
\(647\) 11.8284 + 11.8284i 0.465023 + 0.465023i 0.900298 0.435274i \(-0.143349\pi\)
−0.435274 + 0.900298i \(0.643349\pi\)
\(648\) −28.4853 −1.11901
\(649\) −1.48528 + 1.48528i −0.0583024 + 0.0583024i
\(650\) 6.41421 15.4853i 0.251586 0.607383i
\(651\) 4.00000 9.65685i 0.156772 0.378482i
\(652\) −15.0711 36.3848i −0.590229 1.42494i
\(653\) −36.0919 + 14.9497i −1.41238 + 0.585029i −0.952935 0.303175i \(-0.901953\pi\)
−0.459450 + 0.888204i \(0.651953\pi\)
\(654\) −8.58579 + 8.58579i −0.335731 + 0.335731i
\(655\) 32.1005i 1.25427i
\(656\) −23.3137 + 23.3137i −0.910247 + 0.910247i
\(657\) 4.10051i 0.159976i
\(658\) 16.4853 + 16.4853i 0.642663 + 0.642663i
\(659\) −5.87868 + 2.43503i −0.229001 + 0.0948553i −0.494234 0.869329i \(-0.664551\pi\)
0.265233 + 0.964184i \(0.414551\pi\)
\(660\) 3.65685 + 1.51472i 0.142343 + 0.0589603i
\(661\) 7.74874 18.7071i 0.301391 0.727622i −0.698536 0.715574i \(-0.746165\pi\)
0.999927 0.0120477i \(-0.00383499\pi\)
\(662\) 9.24264 + 3.82843i 0.359225 + 0.148796i
\(663\) 6.82843 6.82843i 0.265194 0.265194i
\(664\) 7.17157 + 17.3137i 0.278311 + 0.671902i
\(665\) 20.2426 + 20.2426i 0.784976 + 0.784976i
\(666\) 0.414214 + 1.00000i 0.0160504 + 0.0387492i
\(667\) 0.656854 + 0.272078i 0.0254335 + 0.0105349i
\(668\) −6.68629 6.68629i −0.258700 0.258700i
\(669\) 9.17157 + 22.1421i 0.354593 + 0.856064i
\(670\) −19.1716 −0.740662
\(671\) 0.242641 0.00936704
\(672\) 13.6569 + 5.65685i 0.526825 + 0.218218i
\(673\) 5.51472 0.212577 0.106288 0.994335i \(-0.466103\pi\)
0.106288 + 0.994335i \(0.466103\pi\)
\(674\) −24.0000 −0.924445
\(675\) 11.7279 + 28.3137i 0.451408 + 1.08980i
\(676\) 13.5563 13.5563i 0.521398 0.521398i
\(677\) −5.60660 2.32233i −0.215479 0.0892544i 0.272333 0.962203i \(-0.412205\pi\)
−0.487812 + 0.872949i \(0.662205\pi\)
\(678\) 17.6569 + 42.6274i 0.678107 + 1.63710i
\(679\) −1.51472 1.51472i −0.0581296 0.0581296i
\(680\) −24.9706 10.3431i −0.957577 0.396642i
\(681\) 8.89949 8.89949i 0.341029 0.341029i
\(682\) 1.65685 + 0.686292i 0.0634442 + 0.0262795i
\(683\) −5.87868 + 14.1924i −0.224941 + 0.543057i −0.995548 0.0942543i \(-0.969953\pi\)
0.770607 + 0.637311i \(0.219953\pi\)
\(684\) −1.89949 + 4.58579i −0.0726290 + 0.175342i
\(685\) −11.7279 + 4.85786i −0.448101 + 0.185609i
\(686\) −16.9706 16.9706i −0.647939 0.647939i
\(687\) 49.5563i 1.89069i
\(688\) 13.1716 31.7990i 0.502162 1.21233i
\(689\) 15.0711i 0.574162i
\(690\) −1.51472 + 1.51472i −0.0576644 + 0.0576644i
\(691\) −28.5061 + 11.8076i −1.08442 + 0.449183i −0.852059 0.523446i \(-0.824646\pi\)
−0.232364 + 0.972629i \(0.574646\pi\)
\(692\) 2.24264 0.928932i 0.0852524 0.0353127i
\(693\) −0.0710678 + 0.171573i −0.00269964 + 0.00651751i
\(694\) 8.41421 20.3137i 0.319399 0.771098i
\(695\) 32.4142 32.4142i 1.22954 1.22954i
\(696\) −10.8284 10.8284i −0.410450 0.410450i
\(697\) 16.4853 + 16.4853i 0.624425 + 0.624425i
\(698\) −36.4558 + 15.1005i −1.37987 + 0.571563i
\(699\) 20.8995 + 8.65685i 0.790491 + 0.327432i
\(700\) 18.1421i 0.685708i
\(701\) 7.12132 + 17.1924i 0.268969 + 0.649348i 0.999435 0.0336007i \(-0.0106974\pi\)
−0.730467 + 0.682948i \(0.760697\pi\)
\(702\) 12.4853i 0.471227i
\(703\) −11.0711 −0.417553
\(704\) −0.970563 + 2.34315i −0.0365795 + 0.0883106i
\(705\) 72.7696 2.74066
\(706\) 8.48528i 0.319348i
\(707\) 6.65685 + 16.0711i 0.250357 + 0.604415i
\(708\) 24.4853i 0.920213i
\(709\) −6.77817 2.80761i −0.254560 0.105442i 0.251755 0.967791i \(-0.418992\pi\)
−0.506314 + 0.862349i \(0.668992\pi\)
\(710\) 1.07107 0.443651i 0.0401965 0.0166499i
\(711\) 1.75736 + 1.75736i 0.0659061 + 0.0659061i
\(712\) 7.51472 7.51472i 0.281626 0.281626i
\(713\) −0.686292 + 0.686292i −0.0257018 + 0.0257018i
\(714\) 4.00000 9.65685i 0.149696 0.361399i
\(715\) −0.757359 + 1.82843i −0.0283236 + 0.0683793i
\(716\) 28.7279 11.8995i 1.07361 0.444705i
\(717\) 29.5563 12.2426i 1.10380 0.457210i
\(718\) −17.2132 + 17.2132i −0.642391 + 0.642391i
\(719\) 24.3431i 0.907846i −0.891041 0.453923i \(-0.850024\pi\)
0.891041 0.453923i \(-0.149976\pi\)
\(720\) 5.17157 2.14214i 0.192733 0.0798327i
\(721\) 14.9706i 0.557533i
\(722\) −16.8995 16.8995i −0.628934 0.628934i
\(723\) 14.4853 6.00000i 0.538713 0.223142i
\(724\) 4.38478 10.5858i 0.162959 0.393418i
\(725\) −7.19239 + 17.3640i −0.267119 + 0.644881i
\(726\) 26.3137 + 10.8995i 0.976593 + 0.404518i
\(727\) 23.9706 23.9706i 0.889019 0.889019i −0.105410 0.994429i \(-0.533615\pi\)
0.994429 + 0.105410i \(0.0336155\pi\)
\(728\) −2.82843 + 6.82843i −0.104828 + 0.253078i
\(729\) 15.7782 + 15.7782i 0.584377 + 0.584377i
\(730\) 18.1005 + 43.6985i 0.669930 + 1.61735i
\(731\) −22.4853 9.31371i −0.831648 0.344480i
\(732\) 2.00000 2.00000i 0.0739221 0.0739221i
\(733\) −0.736544 1.77817i −0.0272049 0.0656784i 0.909693 0.415281i \(-0.136317\pi\)
−0.936898 + 0.349602i \(0.886317\pi\)
\(734\) 8.48528 0.313197
\(735\) −31.2132 −1.15132
\(736\) −0.970563 0.970563i −0.0357754 0.0357754i
\(737\) 1.27208 0.0468576
\(738\) −4.82843 −0.177737
\(739\) 7.53553 + 18.1924i 0.277199 + 0.669218i 0.999756 0.0220937i \(-0.00703323\pi\)
−0.722557 + 0.691312i \(0.757033\pi\)
\(740\) 8.82843 + 8.82843i 0.324539 + 0.324539i
\(741\) −18.8995 7.82843i −0.694290 0.287584i
\(742\) −6.24264 15.0711i −0.229175 0.553276i
\(743\) −13.6274 13.6274i −0.499941 0.499941i 0.411478 0.911420i \(-0.365013\pi\)
−0.911420 + 0.411478i \(0.865013\pi\)
\(744\) 19.3137 8.00000i 0.708075 0.293294i
\(745\) −35.0000 + 35.0000i −1.28230 + 1.28230i
\(746\) 39.9706 + 16.5563i 1.46343 + 0.606171i
\(747\) −1.05025 + 2.53553i −0.0384267 + 0.0927703i
\(748\) 1.65685 + 0.686292i 0.0605806 + 0.0250933i
\(749\) 0.414214 0.171573i 0.0151350 0.00626914i
\(750\) −8.82843 8.82843i −0.322369 0.322369i
\(751\) 22.9706i 0.838208i −0.907938 0.419104i \(-0.862344\pi\)
0.907938 0.419104i \(-0.137656\pi\)
\(752\) 46.6274i 1.70033i
\(753\) 29.2132i 1.06459i
\(754\) 5.41421 5.41421i 0.197174 0.197174i
\(755\) −68.3553 + 28.3137i −2.48771 + 1.03044i
\(756\) −5.17157 12.4853i −0.188088 0.454085i
\(757\) −0.736544 + 1.77817i −0.0267701 + 0.0646289i −0.936699 0.350135i \(-0.886136\pi\)
0.909929 + 0.414764i \(0.136136\pi\)
\(758\) 12.6985 30.6569i 0.461230 1.11351i
\(759\) 0.100505 0.100505i 0.00364810 0.00364810i
\(760\) 57.2548i 2.07685i
\(761\) −24.1716 24.1716i −0.876219 0.876219i 0.116922 0.993141i \(-0.462697\pi\)
−0.993141 + 0.116922i \(0.962697\pi\)
\(762\) −50.6274 + 20.9706i −1.83404 + 0.759683i
\(763\) −6.07107 2.51472i −0.219787 0.0910389i
\(764\) 24.0000 0.868290
\(765\) −1.51472 3.65685i −0.0547648 0.132214i
\(766\) 24.0000i 0.867155i
\(767\) −12.2426 −0.442056
\(768\) 11.3137 + 27.3137i 0.408248 + 0.985599i
\(769\) 22.4853 0.810840 0.405420 0.914131i \(-0.367125\pi\)
0.405420 + 0.914131i \(0.367125\pi\)
\(770\) 2.14214i 0.0771972i
\(771\) 4.24264 + 10.2426i 0.152795 + 0.368880i
\(772\) 36.9706 1.33060
\(773\) −26.0919 10.8076i −0.938460 0.388723i −0.139578 0.990211i \(-0.544575\pi\)