Defining parameters
| Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 32.g (of order \(8\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
| Character field: | \(\Q(\zeta_{8})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(8\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(32, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 20 | 20 | 0 |
| Cusp forms | 12 | 12 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(32, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 32.2.g.a | $4$ | $0.256$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-4\) | \(4\) | \(q+(-\zeta_{8}-\zeta_{8}^{3})q^{2}+(\zeta_{8}+\zeta_{8}^{2})q^{3}+\cdots\) |
| 32.2.g.b | $8$ | $0.256$ | 8.0.18939904.2 | None | \(-4\) | \(-4\) | \(0\) | \(-8\) | \(q-\beta _{2}q^{2}+(\beta _{1}+\beta _{3}+\beta _{5}+\beta _{7})q^{3}+\cdots\) |