Properties

Label 32.2.g
Level $32$
Weight $2$
Character orbit 32.g
Rep. character $\chi_{32}(5,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $12$
Newform subspaces $2$
Sturm bound $8$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 32.g (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(32, [\chi])\).

Total New Old
Modular forms 20 20 0
Cusp forms 12 12 0
Eisenstein series 8 8 0

Trace form

\( 12 q - 4 q^{2} - 4 q^{3} - 4 q^{4} - 4 q^{5} - 4 q^{6} - 4 q^{7} - 4 q^{8} - 4 q^{9} + 4 q^{10} - 4 q^{11} + 12 q^{12} - 4 q^{13} + 12 q^{14} + 16 q^{16} + 16 q^{18} - 4 q^{19} + 12 q^{20} - 4 q^{21} + 8 q^{22}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(32, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
32.2.g.a 32.g 32.g $4$ $0.256$ \(\Q(\zeta_{8})\) None 32.2.g.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-\zeta_{8}-\zeta_{8}^{3})q^{2}+(\zeta_{8}+\zeta_{8}^{2})q^{3}+\cdots\)
32.2.g.b 32.g 32.g $8$ $0.256$ 8.0.18939904.2 None 32.2.g.b \(-4\) \(-4\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{8}]$ \(q-\beta _{2}q^{2}+(\beta _{1}+\beta _{3}+\beta _{5}+\beta _{7})q^{3}+\cdots\)