Defining parameters
Level: | \( N \) | \(=\) | \( 32 = 2^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 32.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(32))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8 | 1 | 7 |
Cusp forms | 1 | 1 | 0 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(32))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
32.2.a.a | $1$ | $0.256$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-2\) | \(0\) | $-$ | \(q-2q^{5}-3q^{9}+6q^{13}+2q^{17}-q^{25}+\cdots\) |