Properties

Label 3192.2.a.q.1.1
Level $3192$
Weight $2$
Character 3192.1
Self dual yes
Analytic conductor $25.488$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,2,Mod(1,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.4882483252\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3192.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -0.732051 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -0.732051 q^{5} +1.00000 q^{7} +1.00000 q^{9} +1.46410 q^{13} +0.732051 q^{15} -4.73205 q^{17} -1.00000 q^{19} -1.00000 q^{21} -4.46410 q^{25} -1.00000 q^{27} +7.66025 q^{29} +2.00000 q^{31} -0.732051 q^{35} -10.0000 q^{37} -1.46410 q^{39} +4.92820 q^{41} -8.92820 q^{43} -0.732051 q^{45} +5.66025 q^{47} +1.00000 q^{49} +4.73205 q^{51} -3.26795 q^{53} +1.00000 q^{57} +8.00000 q^{59} -2.00000 q^{61} +1.00000 q^{63} -1.07180 q^{65} -6.53590 q^{67} +1.26795 q^{71} -10.3923 q^{73} +4.46410 q^{75} +4.00000 q^{79} +1.00000 q^{81} -0.196152 q^{83} +3.46410 q^{85} -7.66025 q^{87} -8.92820 q^{89} +1.46410 q^{91} -2.00000 q^{93} +0.732051 q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} - 4 q^{13} - 2 q^{15} - 6 q^{17} - 2 q^{19} - 2 q^{21} - 2 q^{25} - 2 q^{27} - 2 q^{29} + 4 q^{31} + 2 q^{35} - 20 q^{37} + 4 q^{39} - 4 q^{41} - 4 q^{43} + 2 q^{45} - 6 q^{47} + 2 q^{49} + 6 q^{51} - 10 q^{53} + 2 q^{57} + 16 q^{59} - 4 q^{61} + 2 q^{63} - 16 q^{65} - 20 q^{67} + 6 q^{71} + 2 q^{75} + 8 q^{79} + 2 q^{81} + 10 q^{83} + 2 q^{87} - 4 q^{89} - 4 q^{91} - 4 q^{93} - 2 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −0.732051 −0.327383 −0.163692 0.986512i \(-0.552340\pi\)
−0.163692 + 0.986512i \(0.552340\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 1.46410 0.406069 0.203034 0.979172i \(-0.434920\pi\)
0.203034 + 0.979172i \(0.434920\pi\)
\(14\) 0 0
\(15\) 0.732051 0.189015
\(16\) 0 0
\(17\) −4.73205 −1.14769 −0.573845 0.818964i \(-0.694549\pi\)
−0.573845 + 0.818964i \(0.694549\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −4.46410 −0.892820
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 7.66025 1.42247 0.711237 0.702953i \(-0.248135\pi\)
0.711237 + 0.702953i \(0.248135\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.732051 −0.123739
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −1.46410 −0.234444
\(40\) 0 0
\(41\) 4.92820 0.769656 0.384828 0.922988i \(-0.374261\pi\)
0.384828 + 0.922988i \(0.374261\pi\)
\(42\) 0 0
\(43\) −8.92820 −1.36154 −0.680769 0.732498i \(-0.738354\pi\)
−0.680769 + 0.732498i \(0.738354\pi\)
\(44\) 0 0
\(45\) −0.732051 −0.109128
\(46\) 0 0
\(47\) 5.66025 0.825633 0.412816 0.910814i \(-0.364545\pi\)
0.412816 + 0.910814i \(0.364545\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.73205 0.662620
\(52\) 0 0
\(53\) −3.26795 −0.448887 −0.224444 0.974487i \(-0.572056\pi\)
−0.224444 + 0.974487i \(0.572056\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −1.07180 −0.132940
\(66\) 0 0
\(67\) −6.53590 −0.798487 −0.399244 0.916845i \(-0.630727\pi\)
−0.399244 + 0.916845i \(0.630727\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.26795 0.150478 0.0752389 0.997166i \(-0.476028\pi\)
0.0752389 + 0.997166i \(0.476028\pi\)
\(72\) 0 0
\(73\) −10.3923 −1.21633 −0.608164 0.793812i \(-0.708094\pi\)
−0.608164 + 0.793812i \(0.708094\pi\)
\(74\) 0 0
\(75\) 4.46410 0.515470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −0.196152 −0.0215305 −0.0107653 0.999942i \(-0.503427\pi\)
−0.0107653 + 0.999942i \(0.503427\pi\)
\(84\) 0 0
\(85\) 3.46410 0.375735
\(86\) 0 0
\(87\) −7.66025 −0.821265
\(88\) 0 0
\(89\) −8.92820 −0.946388 −0.473194 0.880958i \(-0.656899\pi\)
−0.473194 + 0.880958i \(0.656899\pi\)
\(90\) 0 0
\(91\) 1.46410 0.153480
\(92\) 0 0
\(93\) −2.00000 −0.207390
\(94\) 0 0
\(95\) 0.732051 0.0751068
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.73205 0.470857 0.235428 0.971892i \(-0.424351\pi\)
0.235428 + 0.971892i \(0.424351\pi\)
\(102\) 0 0
\(103\) 10.9282 1.07679 0.538394 0.842693i \(-0.319031\pi\)
0.538394 + 0.842693i \(0.319031\pi\)
\(104\) 0 0
\(105\) 0.732051 0.0714408
\(106\) 0 0
\(107\) −1.26795 −0.122577 −0.0612886 0.998120i \(-0.519521\pi\)
−0.0612886 + 0.998120i \(0.519521\pi\)
\(108\) 0 0
\(109\) −18.3923 −1.76166 −0.880832 0.473430i \(-0.843016\pi\)
−0.880832 + 0.473430i \(0.843016\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) −10.1962 −0.959173 −0.479587 0.877495i \(-0.659213\pi\)
−0.479587 + 0.877495i \(0.659213\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.46410 0.135356
\(118\) 0 0
\(119\) −4.73205 −0.433786
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −4.92820 −0.444361
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −0.392305 −0.0348114 −0.0174057 0.999849i \(-0.505541\pi\)
−0.0174057 + 0.999849i \(0.505541\pi\)
\(128\) 0 0
\(129\) 8.92820 0.786084
\(130\) 0 0
\(131\) −16.5885 −1.44934 −0.724670 0.689096i \(-0.758008\pi\)
−0.724670 + 0.689096i \(0.758008\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) 0.732051 0.0630049
\(136\) 0 0
\(137\) −0.928203 −0.0793018 −0.0396509 0.999214i \(-0.512625\pi\)
−0.0396509 + 0.999214i \(0.512625\pi\)
\(138\) 0 0
\(139\) 19.3205 1.63874 0.819372 0.573262i \(-0.194322\pi\)
0.819372 + 0.573262i \(0.194322\pi\)
\(140\) 0 0
\(141\) −5.66025 −0.476679
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −5.60770 −0.465694
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −6.39230 −0.523678 −0.261839 0.965112i \(-0.584329\pi\)
−0.261839 + 0.965112i \(0.584329\pi\)
\(150\) 0 0
\(151\) −9.46410 −0.770178 −0.385089 0.922880i \(-0.625829\pi\)
−0.385089 + 0.922880i \(0.625829\pi\)
\(152\) 0 0
\(153\) −4.73205 −0.382564
\(154\) 0 0
\(155\) −1.46410 −0.117599
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 3.26795 0.259165
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.9282 −1.63922 −0.819612 0.572919i \(-0.805811\pi\)
−0.819612 + 0.572919i \(0.805811\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −23.3205 −1.80460 −0.902298 0.431114i \(-0.858121\pi\)
−0.902298 + 0.431114i \(0.858121\pi\)
\(168\) 0 0
\(169\) −10.8564 −0.835108
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −3.07180 −0.233544 −0.116772 0.993159i \(-0.537255\pi\)
−0.116772 + 0.993159i \(0.537255\pi\)
\(174\) 0 0
\(175\) −4.46410 −0.337454
\(176\) 0 0
\(177\) −8.00000 −0.601317
\(178\) 0 0
\(179\) −3.80385 −0.284313 −0.142156 0.989844i \(-0.545404\pi\)
−0.142156 + 0.989844i \(0.545404\pi\)
\(180\) 0 0
\(181\) −8.92820 −0.663628 −0.331814 0.943345i \(-0.607661\pi\)
−0.331814 + 0.943345i \(0.607661\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 7.32051 0.538214
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −1.07180 −0.0775525 −0.0387762 0.999248i \(-0.512346\pi\)
−0.0387762 + 0.999248i \(0.512346\pi\)
\(192\) 0 0
\(193\) 3.85641 0.277590 0.138795 0.990321i \(-0.455677\pi\)
0.138795 + 0.990321i \(0.455677\pi\)
\(194\) 0 0
\(195\) 1.07180 0.0767530
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 8.39230 0.594915 0.297457 0.954735i \(-0.403861\pi\)
0.297457 + 0.954735i \(0.403861\pi\)
\(200\) 0 0
\(201\) 6.53590 0.461007
\(202\) 0 0
\(203\) 7.66025 0.537644
\(204\) 0 0
\(205\) −3.60770 −0.251972
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) −1.26795 −0.0868784
\(214\) 0 0
\(215\) 6.53590 0.445745
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 10.3923 0.702247
\(220\) 0 0
\(221\) −6.92820 −0.466041
\(222\) 0 0
\(223\) −7.07180 −0.473563 −0.236781 0.971563i \(-0.576092\pi\)
−0.236781 + 0.971563i \(0.576092\pi\)
\(224\) 0 0
\(225\) −4.46410 −0.297607
\(226\) 0 0
\(227\) −4.39230 −0.291528 −0.145764 0.989319i \(-0.546564\pi\)
−0.145764 + 0.989319i \(0.546564\pi\)
\(228\) 0 0
\(229\) −20.2487 −1.33807 −0.669036 0.743230i \(-0.733293\pi\)
−0.669036 + 0.743230i \(0.733293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.3923 1.20492 0.602460 0.798149i \(-0.294187\pi\)
0.602460 + 0.798149i \(0.294187\pi\)
\(234\) 0 0
\(235\) −4.14359 −0.270298
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 16.3923 1.06033 0.530165 0.847894i \(-0.322130\pi\)
0.530165 + 0.847894i \(0.322130\pi\)
\(240\) 0 0
\(241\) 0.928203 0.0597908 0.0298954 0.999553i \(-0.490483\pi\)
0.0298954 + 0.999553i \(0.490483\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −0.732051 −0.0467690
\(246\) 0 0
\(247\) −1.46410 −0.0931586
\(248\) 0 0
\(249\) 0.196152 0.0124307
\(250\) 0 0
\(251\) 17.6603 1.11471 0.557353 0.830276i \(-0.311817\pi\)
0.557353 + 0.830276i \(0.311817\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −3.46410 −0.216930
\(256\) 0 0
\(257\) 4.53590 0.282942 0.141471 0.989942i \(-0.454817\pi\)
0.141471 + 0.989942i \(0.454817\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) 7.66025 0.474158
\(262\) 0 0
\(263\) 15.3205 0.944703 0.472351 0.881410i \(-0.343405\pi\)
0.472351 + 0.881410i \(0.343405\pi\)
\(264\) 0 0
\(265\) 2.39230 0.146958
\(266\) 0 0
\(267\) 8.92820 0.546397
\(268\) 0 0
\(269\) −31.1769 −1.90089 −0.950445 0.310893i \(-0.899372\pi\)
−0.950445 + 0.310893i \(0.899372\pi\)
\(270\) 0 0
\(271\) 12.7846 0.776610 0.388305 0.921531i \(-0.373061\pi\)
0.388305 + 0.921531i \(0.373061\pi\)
\(272\) 0 0
\(273\) −1.46410 −0.0886115
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −8.39230 −0.504245 −0.252122 0.967695i \(-0.581129\pi\)
−0.252122 + 0.967695i \(0.581129\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) 6.19615 0.369631 0.184816 0.982773i \(-0.440831\pi\)
0.184816 + 0.982773i \(0.440831\pi\)
\(282\) 0 0
\(283\) 0.392305 0.0233201 0.0116601 0.999932i \(-0.496288\pi\)
0.0116601 + 0.999932i \(0.496288\pi\)
\(284\) 0 0
\(285\) −0.732051 −0.0433629
\(286\) 0 0
\(287\) 4.92820 0.290903
\(288\) 0 0
\(289\) 5.39230 0.317194
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −5.85641 −0.340973
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −8.92820 −0.514613
\(302\) 0 0
\(303\) −4.73205 −0.271849
\(304\) 0 0
\(305\) 1.46410 0.0838342
\(306\) 0 0
\(307\) −22.7846 −1.30039 −0.650193 0.759769i \(-0.725312\pi\)
−0.650193 + 0.759769i \(0.725312\pi\)
\(308\) 0 0
\(309\) −10.9282 −0.621684
\(310\) 0 0
\(311\) −12.5885 −0.713826 −0.356913 0.934138i \(-0.616171\pi\)
−0.356913 + 0.934138i \(0.616171\pi\)
\(312\) 0 0
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 0 0
\(315\) −0.732051 −0.0412464
\(316\) 0 0
\(317\) 1.80385 0.101314 0.0506571 0.998716i \(-0.483868\pi\)
0.0506571 + 0.998716i \(0.483868\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 1.26795 0.0707700
\(322\) 0 0
\(323\) 4.73205 0.263298
\(324\) 0 0
\(325\) −6.53590 −0.362546
\(326\) 0 0
\(327\) 18.3923 1.01710
\(328\) 0 0
\(329\) 5.66025 0.312060
\(330\) 0 0
\(331\) −26.2487 −1.44276 −0.721380 0.692540i \(-0.756492\pi\)
−0.721380 + 0.692540i \(0.756492\pi\)
\(332\) 0 0
\(333\) −10.0000 −0.547997
\(334\) 0 0
\(335\) 4.78461 0.261411
\(336\) 0 0
\(337\) 9.60770 0.523365 0.261682 0.965154i \(-0.415723\pi\)
0.261682 + 0.965154i \(0.415723\pi\)
\(338\) 0 0
\(339\) 10.1962 0.553779
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.39230 0.235791 0.117896 0.993026i \(-0.462385\pi\)
0.117896 + 0.993026i \(0.462385\pi\)
\(348\) 0 0
\(349\) −32.9282 −1.76261 −0.881303 0.472551i \(-0.843333\pi\)
−0.881303 + 0.472551i \(0.843333\pi\)
\(350\) 0 0
\(351\) −1.46410 −0.0781480
\(352\) 0 0
\(353\) 5.80385 0.308908 0.154454 0.988000i \(-0.450638\pi\)
0.154454 + 0.988000i \(0.450638\pi\)
\(354\) 0 0
\(355\) −0.928203 −0.0492639
\(356\) 0 0
\(357\) 4.73205 0.250447
\(358\) 0 0
\(359\) 17.0718 0.901015 0.450507 0.892773i \(-0.351243\pi\)
0.450507 + 0.892773i \(0.351243\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 7.60770 0.398205
\(366\) 0 0
\(367\) 25.4641 1.32922 0.664608 0.747193i \(-0.268599\pi\)
0.664608 + 0.747193i \(0.268599\pi\)
\(368\) 0 0
\(369\) 4.92820 0.256552
\(370\) 0 0
\(371\) −3.26795 −0.169663
\(372\) 0 0
\(373\) −12.9282 −0.669397 −0.334698 0.942325i \(-0.608634\pi\)
−0.334698 + 0.942325i \(0.608634\pi\)
\(374\) 0 0
\(375\) −6.92820 −0.357771
\(376\) 0 0
\(377\) 11.2154 0.577622
\(378\) 0 0
\(379\) 19.3205 0.992428 0.496214 0.868200i \(-0.334723\pi\)
0.496214 + 0.868200i \(0.334723\pi\)
\(380\) 0 0
\(381\) 0.392305 0.0200984
\(382\) 0 0
\(383\) 23.3205 1.19162 0.595811 0.803125i \(-0.296831\pi\)
0.595811 + 0.803125i \(0.296831\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −8.92820 −0.453846
\(388\) 0 0
\(389\) −27.4641 −1.39249 −0.696243 0.717807i \(-0.745146\pi\)
−0.696243 + 0.717807i \(0.745146\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 16.5885 0.836777
\(394\) 0 0
\(395\) −2.92820 −0.147334
\(396\) 0 0
\(397\) 33.7128 1.69200 0.845999 0.533185i \(-0.179005\pi\)
0.845999 + 0.533185i \(0.179005\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) −10.1962 −0.509172 −0.254586 0.967050i \(-0.581939\pi\)
−0.254586 + 0.967050i \(0.581939\pi\)
\(402\) 0 0
\(403\) 2.92820 0.145864
\(404\) 0 0
\(405\) −0.732051 −0.0363759
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7.60770 −0.376176 −0.188088 0.982152i \(-0.560229\pi\)
−0.188088 + 0.982152i \(0.560229\pi\)
\(410\) 0 0
\(411\) 0.928203 0.0457849
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0.143594 0.00704873
\(416\) 0 0
\(417\) −19.3205 −0.946129
\(418\) 0 0
\(419\) 17.2679 0.843595 0.421797 0.906690i \(-0.361399\pi\)
0.421797 + 0.906690i \(0.361399\pi\)
\(420\) 0 0
\(421\) 16.2487 0.791914 0.395957 0.918269i \(-0.370413\pi\)
0.395957 + 0.918269i \(0.370413\pi\)
\(422\) 0 0
\(423\) 5.66025 0.275211
\(424\) 0 0
\(425\) 21.1244 1.02468
\(426\) 0 0
\(427\) −2.00000 −0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.0526 −1.83293 −0.916464 0.400118i \(-0.868969\pi\)
−0.916464 + 0.400118i \(0.868969\pi\)
\(432\) 0 0
\(433\) 11.8564 0.569783 0.284891 0.958560i \(-0.408043\pi\)
0.284891 + 0.958560i \(0.408043\pi\)
\(434\) 0 0
\(435\) 5.60770 0.268868
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.14359 0.388673 0.194336 0.980935i \(-0.437745\pi\)
0.194336 + 0.980935i \(0.437745\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −41.4641 −1.97002 −0.985009 0.172500i \(-0.944815\pi\)
−0.985009 + 0.172500i \(0.944815\pi\)
\(444\) 0 0
\(445\) 6.53590 0.309831
\(446\) 0 0
\(447\) 6.39230 0.302346
\(448\) 0 0
\(449\) 8.73205 0.412091 0.206045 0.978542i \(-0.433941\pi\)
0.206045 + 0.978542i \(0.433941\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 9.46410 0.444662
\(454\) 0 0
\(455\) −1.07180 −0.0502466
\(456\) 0 0
\(457\) 0.392305 0.0183512 0.00917562 0.999958i \(-0.497079\pi\)
0.00917562 + 0.999958i \(0.497079\pi\)
\(458\) 0 0
\(459\) 4.73205 0.220873
\(460\) 0 0
\(461\) 31.6603 1.47457 0.737283 0.675585i \(-0.236109\pi\)
0.737283 + 0.675585i \(0.236109\pi\)
\(462\) 0 0
\(463\) −5.85641 −0.272170 −0.136085 0.990697i \(-0.543452\pi\)
−0.136085 + 0.990697i \(0.543452\pi\)
\(464\) 0 0
\(465\) 1.46410 0.0678961
\(466\) 0 0
\(467\) 38.0526 1.76086 0.880431 0.474174i \(-0.157253\pi\)
0.880431 + 0.474174i \(0.157253\pi\)
\(468\) 0 0
\(469\) −6.53590 −0.301800
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.46410 0.204827
\(476\) 0 0
\(477\) −3.26795 −0.149629
\(478\) 0 0
\(479\) 10.3397 0.472435 0.236218 0.971700i \(-0.424092\pi\)
0.236218 + 0.971700i \(0.424092\pi\)
\(480\) 0 0
\(481\) −14.6410 −0.667573
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.46410 −0.0664814
\(486\) 0 0
\(487\) −1.85641 −0.0841218 −0.0420609 0.999115i \(-0.513392\pi\)
−0.0420609 + 0.999115i \(0.513392\pi\)
\(488\) 0 0
\(489\) 20.9282 0.946406
\(490\) 0 0
\(491\) −15.3205 −0.691405 −0.345702 0.938344i \(-0.612359\pi\)
−0.345702 + 0.938344i \(0.612359\pi\)
\(492\) 0 0
\(493\) −36.2487 −1.63256
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.26795 0.0568753
\(498\) 0 0
\(499\) 17.8564 0.799363 0.399681 0.916654i \(-0.369121\pi\)
0.399681 + 0.916654i \(0.369121\pi\)
\(500\) 0 0
\(501\) 23.3205 1.04188
\(502\) 0 0
\(503\) 1.26795 0.0565351 0.0282675 0.999600i \(-0.491001\pi\)
0.0282675 + 0.999600i \(0.491001\pi\)
\(504\) 0 0
\(505\) −3.46410 −0.154150
\(506\) 0 0
\(507\) 10.8564 0.482150
\(508\) 0 0
\(509\) 40.2487 1.78399 0.891996 0.452043i \(-0.149304\pi\)
0.891996 + 0.452043i \(0.149304\pi\)
\(510\) 0 0
\(511\) −10.3923 −0.459728
\(512\) 0 0
\(513\) 1.00000 0.0441511
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 3.07180 0.134837
\(520\) 0 0
\(521\) −12.2487 −0.536626 −0.268313 0.963332i \(-0.586466\pi\)
−0.268313 + 0.963332i \(0.586466\pi\)
\(522\) 0 0
\(523\) −22.0000 −0.961993 −0.480996 0.876723i \(-0.659725\pi\)
−0.480996 + 0.876723i \(0.659725\pi\)
\(524\) 0 0
\(525\) 4.46410 0.194829
\(526\) 0 0
\(527\) −9.46410 −0.412263
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 7.21539 0.312533
\(534\) 0 0
\(535\) 0.928203 0.0401297
\(536\) 0 0
\(537\) 3.80385 0.164148
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 8.92820 0.383146
\(544\) 0 0
\(545\) 13.4641 0.576739
\(546\) 0 0
\(547\) 43.7128 1.86902 0.934512 0.355930i \(-0.115836\pi\)
0.934512 + 0.355930i \(0.115836\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −7.66025 −0.326338
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 0 0
\(555\) −7.32051 −0.310738
\(556\) 0 0
\(557\) 27.4641 1.16369 0.581846 0.813299i \(-0.302331\pi\)
0.581846 + 0.813299i \(0.302331\pi\)
\(558\) 0 0
\(559\) −13.0718 −0.552878
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.5359 −0.781195 −0.390597 0.920562i \(-0.627732\pi\)
−0.390597 + 0.920562i \(0.627732\pi\)
\(564\) 0 0
\(565\) 7.46410 0.314017
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −2.58846 −0.108514 −0.0542569 0.998527i \(-0.517279\pi\)
−0.0542569 + 0.998527i \(0.517279\pi\)
\(570\) 0 0
\(571\) 1.85641 0.0776882 0.0388441 0.999245i \(-0.487632\pi\)
0.0388441 + 0.999245i \(0.487632\pi\)
\(572\) 0 0
\(573\) 1.07180 0.0447750
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) 0 0
\(579\) −3.85641 −0.160267
\(580\) 0 0
\(581\) −0.196152 −0.00813777
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.07180 −0.0443133
\(586\) 0 0
\(587\) −39.9090 −1.64722 −0.823610 0.567157i \(-0.808043\pi\)
−0.823610 + 0.567157i \(0.808043\pi\)
\(588\) 0 0
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 0 0
\(593\) 38.1962 1.56853 0.784264 0.620427i \(-0.213041\pi\)
0.784264 + 0.620427i \(0.213041\pi\)
\(594\) 0 0
\(595\) 3.46410 0.142014
\(596\) 0 0
\(597\) −8.39230 −0.343474
\(598\) 0 0
\(599\) −10.7321 −0.438500 −0.219250 0.975669i \(-0.570361\pi\)
−0.219250 + 0.975669i \(0.570361\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 0 0
\(603\) −6.53590 −0.266162
\(604\) 0 0
\(605\) 8.05256 0.327383
\(606\) 0 0
\(607\) −26.9282 −1.09298 −0.546491 0.837465i \(-0.684037\pi\)
−0.546491 + 0.837465i \(0.684037\pi\)
\(608\) 0 0
\(609\) −7.66025 −0.310409
\(610\) 0 0
\(611\) 8.28719 0.335264
\(612\) 0 0
\(613\) 30.2487 1.22173 0.610867 0.791733i \(-0.290821\pi\)
0.610867 + 0.791733i \(0.290821\pi\)
\(614\) 0 0
\(615\) 3.60770 0.145476
\(616\) 0 0
\(617\) 44.6410 1.79718 0.898590 0.438790i \(-0.144593\pi\)
0.898590 + 0.438790i \(0.144593\pi\)
\(618\) 0 0
\(619\) 49.1769 1.97659 0.988294 0.152564i \(-0.0487531\pi\)
0.988294 + 0.152564i \(0.0487531\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.92820 −0.357701
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.3205 1.88679
\(630\) 0 0
\(631\) 27.0718 1.07771 0.538856 0.842398i \(-0.318857\pi\)
0.538856 + 0.842398i \(0.318857\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) 0.287187 0.0113967
\(636\) 0 0
\(637\) 1.46410 0.0580098
\(638\) 0 0
\(639\) 1.26795 0.0501593
\(640\) 0 0
\(641\) −23.6603 −0.934524 −0.467262 0.884119i \(-0.654759\pi\)
−0.467262 + 0.884119i \(0.654759\pi\)
\(642\) 0 0
\(643\) −0.392305 −0.0154710 −0.00773550 0.999970i \(-0.502462\pi\)
−0.00773550 + 0.999970i \(0.502462\pi\)
\(644\) 0 0
\(645\) −6.53590 −0.257351
\(646\) 0 0
\(647\) 13.6603 0.537040 0.268520 0.963274i \(-0.413465\pi\)
0.268520 + 0.963274i \(0.413465\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 0 0
\(653\) −1.21539 −0.0475619 −0.0237809 0.999717i \(-0.507570\pi\)
−0.0237809 + 0.999717i \(0.507570\pi\)
\(654\) 0 0
\(655\) 12.1436 0.474489
\(656\) 0 0
\(657\) −10.3923 −0.405442
\(658\) 0 0
\(659\) −6.05256 −0.235774 −0.117887 0.993027i \(-0.537612\pi\)
−0.117887 + 0.993027i \(0.537612\pi\)
\(660\) 0 0
\(661\) −13.4641 −0.523693 −0.261846 0.965110i \(-0.584331\pi\)
−0.261846 + 0.965110i \(0.584331\pi\)
\(662\) 0 0
\(663\) 6.92820 0.269069
\(664\) 0 0
\(665\) 0.732051 0.0283877
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 7.07180 0.273411
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −20.9282 −0.806723 −0.403361 0.915041i \(-0.632158\pi\)
−0.403361 + 0.915041i \(0.632158\pi\)
\(674\) 0 0
\(675\) 4.46410 0.171823
\(676\) 0 0
\(677\) −5.32051 −0.204484 −0.102242 0.994760i \(-0.532602\pi\)
−0.102242 + 0.994760i \(0.532602\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) 4.39230 0.168313
\(682\) 0 0
\(683\) 1.26795 0.0485167 0.0242584 0.999706i \(-0.492278\pi\)
0.0242584 + 0.999706i \(0.492278\pi\)
\(684\) 0 0
\(685\) 0.679492 0.0259621
\(686\) 0 0
\(687\) 20.2487 0.772537
\(688\) 0 0
\(689\) −4.78461 −0.182279
\(690\) 0 0
\(691\) 32.7846 1.24719 0.623593 0.781749i \(-0.285672\pi\)
0.623593 + 0.781749i \(0.285672\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.1436 −0.536497
\(696\) 0 0
\(697\) −23.3205 −0.883327
\(698\) 0 0
\(699\) −18.3923 −0.695661
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 0 0
\(705\) 4.14359 0.156057
\(706\) 0 0
\(707\) 4.73205 0.177967
\(708\) 0 0
\(709\) −20.3923 −0.765849 −0.382925 0.923780i \(-0.625083\pi\)
−0.382925 + 0.923780i \(0.625083\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.3923 −0.612182
\(718\) 0 0
\(719\) −4.98076 −0.185751 −0.0928755 0.995678i \(-0.529606\pi\)
−0.0928755 + 0.995678i \(0.529606\pi\)
\(720\) 0 0
\(721\) 10.9282 0.406988
\(722\) 0 0
\(723\) −0.928203 −0.0345202
\(724\) 0 0
\(725\) −34.1962 −1.27001
\(726\) 0 0
\(727\) 5.07180 0.188103 0.0940513 0.995567i \(-0.470018\pi\)
0.0940513 + 0.995567i \(0.470018\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 42.2487 1.56263
\(732\) 0 0
\(733\) −44.2487 −1.63436 −0.817182 0.576380i \(-0.804465\pi\)
−0.817182 + 0.576380i \(0.804465\pi\)
\(734\) 0 0
\(735\) 0.732051 0.0270021
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −47.8564 −1.76043 −0.880213 0.474578i \(-0.842601\pi\)
−0.880213 + 0.474578i \(0.842601\pi\)
\(740\) 0 0
\(741\) 1.46410 0.0537851
\(742\) 0 0
\(743\) −5.26795 −0.193262 −0.0966312 0.995320i \(-0.530807\pi\)
−0.0966312 + 0.995320i \(0.530807\pi\)
\(744\) 0 0
\(745\) 4.67949 0.171443
\(746\) 0 0
\(747\) −0.196152 −0.00717684
\(748\) 0 0
\(749\) −1.26795 −0.0463299
\(750\) 0 0
\(751\) 13.1769 0.480832 0.240416 0.970670i \(-0.422716\pi\)
0.240416 + 0.970670i \(0.422716\pi\)
\(752\) 0 0
\(753\) −17.6603 −0.643575
\(754\) 0 0
\(755\) 6.92820 0.252143
\(756\) 0 0
\(757\) 18.7846 0.682738 0.341369 0.939929i \(-0.389109\pi\)
0.341369 + 0.939929i \(0.389109\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16.3397 0.592315 0.296158 0.955139i \(-0.404295\pi\)
0.296158 + 0.955139i \(0.404295\pi\)
\(762\) 0 0
\(763\) −18.3923 −0.665846
\(764\) 0 0
\(765\) 3.46410 0.125245
\(766\) 0 0
\(767\) 11.7128 0.422925
\(768\) 0 0
\(769\) 27.8564 1.00453 0.502264 0.864714i \(-0.332501\pi\)
0.502264 + 0.864714i \(0.332501\pi\)
\(770\) 0 0
\(771\) −4.53590 −0.163356
\(772\) 0 0
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −8.92820 −0.320711
\(776\) 0 0
\(777\) 10.0000 0.358748
\(778\) 0 0
\(779\) −4.92820 −0.176571
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −7.66025 −0.273755
\(784\) 0 0
\(785\) 10.2487 0.365792
\(786\) 0 0
\(787\) 0.143594 0.00511856 0.00255928 0.999997i \(-0.499185\pi\)
0.00255928 + 0.999997i \(0.499185\pi\)
\(788\) 0 0
\(789\) −15.3205 −0.545425
\(790\) 0 0
\(791\) −10.1962 −0.362533
\(792\) 0 0
\(793\) −2.92820 −0.103984
\(794\) 0 0
\(795\) −2.39230 −0.0848463
\(796\) 0 0
\(797\) 30.7846 1.09045 0.545223 0.838291i \(-0.316445\pi\)
0.545223 + 0.838291i \(0.316445\pi\)
\(798\) 0 0
\(799\) −26.7846 −0.947571
\(800\) 0 0
\(801\) −8.92820 −0.315463
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 31.1769 1.09748
\(808\) 0 0
\(809\) 30.7846 1.08233 0.541165 0.840917i \(-0.317984\pi\)
0.541165 + 0.840917i \(0.317984\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) −12.7846 −0.448376
\(814\) 0 0
\(815\) 15.3205 0.536654
\(816\) 0 0
\(817\) 8.92820 0.312358
\(818\) 0 0
\(819\) 1.46410 0.0511599
\(820\) 0 0
\(821\) 28.5359 0.995910 0.497955 0.867203i \(-0.334085\pi\)
0.497955 + 0.867203i \(0.334085\pi\)
\(822\) 0 0
\(823\) −48.6410 −1.69552 −0.847760 0.530381i \(-0.822049\pi\)
−0.847760 + 0.530381i \(0.822049\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.9090 0.414115 0.207058 0.978329i \(-0.433611\pi\)
0.207058 + 0.978329i \(0.433611\pi\)
\(828\) 0 0
\(829\) 17.7128 0.615191 0.307596 0.951517i \(-0.400476\pi\)
0.307596 + 0.951517i \(0.400476\pi\)
\(830\) 0 0
\(831\) 8.39230 0.291126
\(832\) 0 0
\(833\) −4.73205 −0.163956
\(834\) 0 0
\(835\) 17.0718 0.590794
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) 12.7846 0.441374 0.220687 0.975345i \(-0.429170\pi\)
0.220687 + 0.975345i \(0.429170\pi\)
\(840\) 0 0
\(841\) 29.6795 1.02343
\(842\) 0 0
\(843\) −6.19615 −0.213407
\(844\) 0 0
\(845\) 7.94744 0.273400
\(846\) 0 0
\(847\) −11.0000 −0.377964
\(848\) 0 0
\(849\) −0.392305 −0.0134639
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −43.8564 −1.50161 −0.750807 0.660521i \(-0.770335\pi\)
−0.750807 + 0.660521i \(0.770335\pi\)
\(854\) 0 0
\(855\) 0.732051 0.0250356
\(856\) 0 0
\(857\) 3.07180 0.104931 0.0524653 0.998623i \(-0.483292\pi\)
0.0524653 + 0.998623i \(0.483292\pi\)
\(858\) 0 0
\(859\) 18.1436 0.619051 0.309526 0.950891i \(-0.399830\pi\)
0.309526 + 0.950891i \(0.399830\pi\)
\(860\) 0 0
\(861\) −4.92820 −0.167953
\(862\) 0 0
\(863\) 8.98076 0.305709 0.152854 0.988249i \(-0.451153\pi\)
0.152854 + 0.988249i \(0.451153\pi\)
\(864\) 0 0
\(865\) 2.24871 0.0764585
\(866\) 0 0
\(867\) −5.39230 −0.183132
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −9.56922 −0.324241
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 6.92820 0.234216
\(876\) 0 0
\(877\) 1.71281 0.0578376 0.0289188 0.999582i \(-0.490794\pi\)
0.0289188 + 0.999582i \(0.490794\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 0.732051 0.0246634 0.0123317 0.999924i \(-0.496075\pi\)
0.0123317 + 0.999924i \(0.496075\pi\)
\(882\) 0 0
\(883\) 22.9282 0.771595 0.385798 0.922583i \(-0.373926\pi\)
0.385798 + 0.922583i \(0.373926\pi\)
\(884\) 0 0
\(885\) 5.85641 0.196861
\(886\) 0 0
\(887\) −6.24871 −0.209811 −0.104906 0.994482i \(-0.533454\pi\)
−0.104906 + 0.994482i \(0.533454\pi\)
\(888\) 0 0
\(889\) −0.392305 −0.0131575
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.66025 −0.189413
\(894\) 0 0
\(895\) 2.78461 0.0930792
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.3205 0.510968
\(900\) 0 0
\(901\) 15.4641 0.515184
\(902\) 0 0
\(903\) 8.92820 0.297112
\(904\) 0 0
\(905\) 6.53590 0.217261
\(906\) 0 0
\(907\) −54.6410 −1.81433 −0.907163 0.420780i \(-0.861756\pi\)
−0.907163 + 0.420780i \(0.861756\pi\)
\(908\) 0 0
\(909\) 4.73205 0.156952
\(910\) 0 0
\(911\) −9.26795 −0.307061 −0.153530 0.988144i \(-0.549064\pi\)
−0.153530 + 0.988144i \(0.549064\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −1.46410 −0.0484017
\(916\) 0 0
\(917\) −16.5885 −0.547799
\(918\) 0 0
\(919\) −2.14359 −0.0707106 −0.0353553 0.999375i \(-0.511256\pi\)
−0.0353553 + 0.999375i \(0.511256\pi\)
\(920\) 0 0
\(921\) 22.7846 0.750778
\(922\) 0 0
\(923\) 1.85641 0.0611044
\(924\) 0 0
\(925\) 44.6410 1.46779
\(926\) 0 0
\(927\) 10.9282 0.358929
\(928\) 0 0
\(929\) 46.9808 1.54139 0.770694 0.637205i \(-0.219910\pi\)
0.770694 + 0.637205i \(0.219910\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 12.5885 0.412128
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20.6410 −0.674313 −0.337156 0.941449i \(-0.609465\pi\)
−0.337156 + 0.941449i \(0.609465\pi\)
\(938\) 0 0
\(939\) 2.00000 0.0652675
\(940\) 0 0
\(941\) −44.5359 −1.45183 −0.725914 0.687785i \(-0.758583\pi\)
−0.725914 + 0.687785i \(0.758583\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.732051 0.0238136
\(946\) 0 0
\(947\) 22.9282 0.745066 0.372533 0.928019i \(-0.378489\pi\)
0.372533 + 0.928019i \(0.378489\pi\)
\(948\) 0 0
\(949\) −15.2154 −0.493912
\(950\) 0 0
\(951\) −1.80385 −0.0584938
\(952\) 0 0
\(953\) 29.8038 0.965441 0.482721 0.875774i \(-0.339649\pi\)
0.482721 + 0.875774i \(0.339649\pi\)
\(954\) 0 0
\(955\) 0.784610 0.0253894
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.928203 −0.0299732
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −1.26795 −0.0408591
\(964\) 0 0
\(965\) −2.82309 −0.0908783
\(966\) 0 0
\(967\) 32.6410 1.04966 0.524832 0.851206i \(-0.324128\pi\)
0.524832 + 0.851206i \(0.324128\pi\)
\(968\) 0 0
\(969\) −4.73205 −0.152015
\(970\) 0 0
\(971\) 59.7128 1.91628 0.958138 0.286308i \(-0.0924280\pi\)
0.958138 + 0.286308i \(0.0924280\pi\)
\(972\) 0 0
\(973\) 19.3205 0.619387
\(974\) 0 0
\(975\) 6.53590 0.209316
\(976\) 0 0
\(977\) 58.3013 1.86522 0.932611 0.360882i \(-0.117524\pi\)
0.932611 + 0.360882i \(0.117524\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −18.3923 −0.587221
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 13.1769 0.419851
\(986\) 0 0
\(987\) −5.66025 −0.180168
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 28.7846 0.914373 0.457187 0.889371i \(-0.348857\pi\)
0.457187 + 0.889371i \(0.348857\pi\)
\(992\) 0 0
\(993\) 26.2487 0.832978
\(994\) 0 0
\(995\) −6.14359 −0.194765
\(996\) 0 0
\(997\) 7.85641 0.248815 0.124407 0.992231i \(-0.460297\pi\)
0.124407 + 0.992231i \(0.460297\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.2.a.q.1.1 2
3.2 odd 2 9576.2.a.bj.1.2 2
4.3 odd 2 6384.2.a.bs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.q.1.1 2 1.1 even 1 trivial
6384.2.a.bs.1.1 2 4.3 odd 2
9576.2.a.bj.1.2 2 3.2 odd 2