Properties

Label 3192.2.a.k.1.1
Level $3192$
Weight $2$
Character 3192.1
Self dual yes
Analytic conductor $25.488$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,2,Mod(1,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.4882483252\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3192.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -4.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +4.00000 q^{11} +2.00000 q^{13} -4.00000 q^{15} -4.00000 q^{17} -1.00000 q^{19} -1.00000 q^{21} +11.0000 q^{25} +1.00000 q^{27} +4.00000 q^{29} -8.00000 q^{31} +4.00000 q^{33} +4.00000 q^{35} -2.00000 q^{37} +2.00000 q^{39} -6.00000 q^{41} +12.0000 q^{43} -4.00000 q^{45} -10.0000 q^{47} +1.00000 q^{49} -4.00000 q^{51} -16.0000 q^{55} -1.00000 q^{57} -12.0000 q^{59} -2.00000 q^{61} -1.00000 q^{63} -8.00000 q^{65} -8.00000 q^{67} +6.00000 q^{71} +14.0000 q^{73} +11.0000 q^{75} -4.00000 q^{77} -8.00000 q^{79} +1.00000 q^{81} +6.00000 q^{83} +16.0000 q^{85} +4.00000 q^{87} +2.00000 q^{89} -2.00000 q^{91} -8.00000 q^{93} +4.00000 q^{95} +2.00000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) −10.0000 −1.45865 −0.729325 0.684167i \(-0.760166\pi\)
−0.729325 + 0.684167i \(0.760166\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −16.0000 −2.15744
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −8.00000 −0.992278
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) −14.0000 −1.35343 −0.676716 0.736245i \(-0.736597\pi\)
−0.676716 + 0.736245i \(0.736597\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −22.0000 −1.92215 −0.961074 0.276289i \(-0.910895\pi\)
−0.961074 + 0.276289i \(0.910895\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) −16.0000 −1.32873
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 32.0000 2.57030
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −16.0000 −1.24560
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −11.0000 −0.831522
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) −16.0000 −1.17004
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) 24.0000 1.67623
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) −48.0000 −3.27357
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) −24.0000 −1.59294 −0.796468 0.604681i \(-0.793301\pi\)
−0.796468 + 0.604681i \(0.793301\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 40.0000 2.60931
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 28.0000 1.81117 0.905585 0.424165i \(-0.139432\pi\)
0.905585 + 0.424165i \(0.139432\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −4.00000 −0.255551
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 26.0000 1.64111 0.820553 0.571571i \(-0.193666\pi\)
0.820553 + 0.571571i \(0.193666\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 16.0000 1.00196
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 4.00000 0.247594
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 44.0000 2.65330
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) −34.0000 −1.98630 −0.993151 0.116841i \(-0.962723\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 48.0000 2.79467
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) 8.00000 0.458079
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 16.0000 0.895828
\(320\) 0 0
\(321\) −14.0000 −0.781404
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 22.0000 1.22034
\(326\) 0 0
\(327\) −14.0000 −0.774202
\(328\) 0 0
\(329\) 10.0000 0.551318
\(330\) 0 0
\(331\) 24.0000 1.31916 0.659580 0.751635i \(-0.270734\pi\)
0.659580 + 0.751635i \(0.270734\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 32.0000 1.74835
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) −32.0000 −1.73290
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.0000 1.71785 0.858925 0.512101i \(-0.171133\pi\)
0.858925 + 0.512101i \(0.171133\pi\)
\(348\) 0 0
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −36.0000 −1.91609 −0.958043 0.286623i \(-0.907467\pi\)
−0.958043 + 0.286623i \(0.907467\pi\)
\(354\) 0 0
\(355\) −24.0000 −1.27379
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 5.00000 0.262432
\(364\) 0 0
\(365\) −56.0000 −2.93117
\(366\) 0 0
\(367\) 36.0000 1.87918 0.939592 0.342296i \(-0.111204\pi\)
0.939592 + 0.342296i \(0.111204\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −32.0000 −1.64373 −0.821865 0.569683i \(-0.807066\pi\)
−0.821865 + 0.569683i \(0.807066\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −22.0000 −1.10975
\(394\) 0 0
\(395\) 32.0000 1.61009
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) 28.0000 1.39825 0.699127 0.714998i \(-0.253572\pi\)
0.699127 + 0.714998i \(0.253572\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) 0 0
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) 6.00000 0.296681 0.148340 0.988936i \(-0.452607\pi\)
0.148340 + 0.988936i \(0.452607\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) −10.0000 −0.486217
\(424\) 0 0
\(425\) −44.0000 −2.13431
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) −16.0000 −0.767141
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) −22.0000 −1.04056
\(448\) 0 0
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −26.0000 −1.21623 −0.608114 0.793849i \(-0.708074\pi\)
−0.608114 + 0.793849i \(0.708074\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) 20.0000 0.931493 0.465746 0.884918i \(-0.345786\pi\)
0.465746 + 0.884918i \(0.345786\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 32.0000 1.48396
\(466\) 0 0
\(467\) −14.0000 −0.647843 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 48.0000 2.20704
\(474\) 0 0
\(475\) −11.0000 −0.504715
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.00000 −0.274147 −0.137073 0.990561i \(-0.543770\pi\)
−0.137073 + 0.990561i \(0.543770\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.00000 −0.363261
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 0 0
\(493\) −16.0000 −0.720604
\(494\) 0 0
\(495\) −16.0000 −0.719147
\(496\) 0 0
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 48.0000 2.13597
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 32.0000 1.41009
\(516\) 0 0
\(517\) −40.0000 −1.75920
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) −11.0000 −0.480079
\(526\) 0 0
\(527\) 32.0000 1.39394
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 56.0000 2.42109
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 56.0000 2.39878
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 8.00000 0.339581
\(556\) 0 0
\(557\) −46.0000 −1.94908 −0.974541 0.224208i \(-0.928020\pi\)
−0.974541 + 0.224208i \(0.928020\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 64.0000 2.69250
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −8.00000 −0.330759
\(586\) 0 0
\(587\) −38.0000 −1.56843 −0.784214 0.620491i \(-0.786934\pi\)
−0.784214 + 0.620491i \(0.786934\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) −10.0000 −0.411345
\(592\) 0 0
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) −6.00000 −0.245153 −0.122577 0.992459i \(-0.539116\pi\)
−0.122577 + 0.992459i \(0.539116\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) 0 0
\(605\) −20.0000 −0.813116
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) −20.0000 −0.809113
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 24.0000 0.967773
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.00000 −0.0801283
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −48.0000 −1.89000
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 88.0000 3.43844
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) −4.00000 −0.155113
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) 0 0
\(675\) 11.0000 0.423390
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) 22.0000 0.841807 0.420903 0.907106i \(-0.361713\pi\)
0.420903 + 0.907106i \(0.361713\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) −32.0000 −1.21383
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 40.0000 1.50649
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −32.0000 −1.19673
\(716\) 0 0
\(717\) 28.0000 1.04568
\(718\) 0 0
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 26.0000 0.966950
\(724\) 0 0
\(725\) 44.0000 1.63412
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −48.0000 −1.77534
\(732\) 0 0
\(733\) 10.0000 0.369358 0.184679 0.982799i \(-0.440875\pi\)
0.184679 + 0.982799i \(0.440875\pi\)
\(734\) 0 0
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) 22.0000 0.807102 0.403551 0.914957i \(-0.367776\pi\)
0.403551 + 0.914957i \(0.367776\pi\)
\(744\) 0 0
\(745\) 88.0000 3.22407
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) 14.0000 0.511549
\(750\) 0 0
\(751\) 12.0000 0.437886 0.218943 0.975738i \(-0.429739\pi\)
0.218943 + 0.975738i \(0.429739\pi\)
\(752\) 0 0
\(753\) 26.0000 0.947493
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.0000 −1.16000 −0.580000 0.814617i \(-0.696947\pi\)
−0.580000 + 0.814617i \(0.696947\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) 0 0
\(765\) 16.0000 0.578481
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −88.0000 −3.16105
\(776\) 0 0
\(777\) 2.00000 0.0717496
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 0 0
\(783\) 4.00000 0.142948
\(784\) 0 0
\(785\) 8.00000 0.285532
\(786\) 0 0
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) 0 0
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) 16.0000 0.568895
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 56.0000 1.97620
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) −16.0000 −0.560456
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) 0 0
\(823\) −56.0000 −1.95204 −0.976019 0.217687i \(-0.930149\pi\)
−0.976019 + 0.217687i \(0.930149\pi\)
\(824\) 0 0
\(825\) 44.0000 1.53188
\(826\) 0 0
\(827\) −6.00000 −0.208640 −0.104320 0.994544i \(-0.533267\pi\)
−0.104320 + 0.994544i \(0.533267\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) −4.00000 −0.138592
\(834\) 0 0
\(835\) 48.0000 1.66111
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 16.0000 0.551069
\(844\) 0 0
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) 2.00000 0.0680808 0.0340404 0.999420i \(-0.489163\pi\)
0.0340404 + 0.999420i \(0.489163\pi\)
\(864\) 0 0
\(865\) −24.0000 −0.816024
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 0 0
\(879\) −34.0000 −1.14679
\(880\) 0 0
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 48.0000 1.61350
\(886\) 0 0
\(887\) 20.0000 0.671534 0.335767 0.941945i \(-0.391004\pi\)
0.335767 + 0.941945i \(0.391004\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 10.0000 0.334637
\(894\) 0 0
\(895\) 40.0000 1.33705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −32.0000 −1.06726
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) 8.00000 0.265929
\(906\) 0 0
\(907\) −36.0000 −1.19536 −0.597680 0.801735i \(-0.703911\pi\)
−0.597680 + 0.801735i \(0.703911\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −46.0000 −1.52405 −0.762024 0.647549i \(-0.775794\pi\)
−0.762024 + 0.647549i \(0.775794\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) 8.00000 0.264472
\(916\) 0 0
\(917\) 22.0000 0.726504
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) 0 0
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) −22.0000 −0.723356
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −4.00000 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 6.00000 0.196431
\(934\) 0 0
\(935\) 64.0000 2.09302
\(936\) 0 0
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) 0 0
\(939\) 26.0000 0.848478
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 28.0000 0.908918
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) −44.0000 −1.42530 −0.712650 0.701520i \(-0.752505\pi\)
−0.712650 + 0.701520i \(0.752505\pi\)
\(954\) 0 0
\(955\) −32.0000 −1.03550
\(956\) 0 0
\(957\) 16.0000 0.517207
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −14.0000 −0.451144
\(964\) 0 0
\(965\) 56.0000 1.80270
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) 22.0000 0.704564
\(976\) 0 0
\(977\) −44.0000 −1.40768 −0.703842 0.710356i \(-0.748534\pi\)
−0.703842 + 0.710356i \(0.748534\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) 0 0
\(983\) −56.0000 −1.78612 −0.893061 0.449935i \(-0.851447\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(984\) 0 0
\(985\) 40.0000 1.27451
\(986\) 0 0
\(987\) 10.0000 0.318304
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) 0 0
\(993\) 24.0000 0.761617
\(994\) 0 0
\(995\) −80.0000 −2.53617
\(996\) 0 0
\(997\) 62.0000 1.96356 0.981780 0.190022i \(-0.0608559\pi\)
0.981780 + 0.190022i \(0.0608559\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.2.a.k.1.1 1
3.2 odd 2 9576.2.a.y.1.1 1
4.3 odd 2 6384.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.k.1.1 1 1.1 even 1 trivial
6384.2.a.b.1.1 1 4.3 odd 2
9576.2.a.y.1.1 1 3.2 odd 2