Properties

Label 3192.2.a.i.1.1
Level $3192$
Weight $2$
Character 3192.1
Self dual yes
Analytic conductor $25.488$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,2,Mod(1,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.4882483252\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3192.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +4.00000 q^{11} -6.00000 q^{13} -2.00000 q^{15} +6.00000 q^{17} +1.00000 q^{19} +1.00000 q^{21} +8.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} -6.00000 q^{29} -4.00000 q^{33} -2.00000 q^{35} -2.00000 q^{37} +6.00000 q^{39} +6.00000 q^{41} -4.00000 q^{43} +2.00000 q^{45} +4.00000 q^{47} +1.00000 q^{49} -6.00000 q^{51} +2.00000 q^{53} +8.00000 q^{55} -1.00000 q^{57} +12.0000 q^{59} -10.0000 q^{61} -1.00000 q^{63} -12.0000 q^{65} +8.00000 q^{67} -8.00000 q^{69} +10.0000 q^{73} +1.00000 q^{75} -4.00000 q^{77} -12.0000 q^{79} +1.00000 q^{81} +16.0000 q^{83} +12.0000 q^{85} +6.00000 q^{87} +6.00000 q^{89} +6.00000 q^{91} +2.00000 q^{95} -10.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) 0 0
\(117\) −6.00000 −0.554700
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −6.00000 −0.541002
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −2.00000 −0.172133
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) −24.0000 −2.00698
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) −8.00000 −0.622799
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −36.0000 −2.42162
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 12.0000 0.779484
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 2.00000 0.127775
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 32.0000 2.01182
\(254\) 0 0
\(255\) −12.0000 −0.751469
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −6.00000 −0.363137
\(274\) 0 0
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) 0 0
\(299\) −48.0000 −2.77591
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 6.00000 0.344691
\(304\) 0 0
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) −2.00000 −0.112687
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) 6.00000 0.332820
\(326\) 0 0
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −16.0000 −0.861411
\(346\) 0 0
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 20.0000 1.04685
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −2.00000 −0.103835
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) −24.0000 −1.20757
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 4.00000 0.194487
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 0 0
\(447\) 2.00000 0.0945968
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 12.0000 0.562569
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) −6.00000 −0.280056
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.0000 −0.740392 −0.370196 0.928954i \(-0.620709\pi\)
−0.370196 + 0.928954i \(0.620709\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) 0 0
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) 28.0000 1.24846 0.624229 0.781241i \(-0.285413\pi\)
0.624229 + 0.781241i \(0.285413\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 32.0000 1.41009
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −28.0000 −1.22435 −0.612177 0.790721i \(-0.709706\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) 0 0
\(537\) 4.00000 0.172613
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 6.00000 0.257485
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) −42.0000 −1.77960 −0.889799 0.456354i \(-0.849155\pi\)
−0.889799 + 0.456354i \(0.849155\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 44.0000 1.85438 0.927189 0.374593i \(-0.122217\pi\)
0.927189 + 0.374593i \(0.122217\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) 8.00000 0.331326
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 6.00000 0.244745 0.122373 0.992484i \(-0.460950\pi\)
0.122373 + 0.992484i \(0.460950\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 10.0000 0.406558
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 48.0000 1.91085 0.955425 0.295234i \(-0.0953977\pi\)
0.955425 + 0.295234i \(0.0953977\pi\)
\(632\) 0 0
\(633\) −8.00000 −0.317971
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.00000 0.236986 0.118493 0.992955i \(-0.462194\pi\)
0.118493 + 0.992955i \(0.462194\pi\)
\(642\) 0 0
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 32.0000 1.25034
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 0 0
\(663\) 36.0000 1.39812
\(664\) 0 0
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) −6.00000 −0.231283 −0.115642 0.993291i \(-0.536892\pi\)
−0.115642 + 0.993291i \(0.536892\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) −14.0000 −0.534133
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −48.0000 −1.79510
\(716\) 0 0
\(717\) 8.00000 0.298765
\(718\) 0 0
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 2.00000 0.0743808
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 48.0000 1.78022 0.890111 0.455744i \(-0.150627\pi\)
0.890111 + 0.455744i \(0.150627\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) 32.0000 1.17874
\(738\) 0 0
\(739\) −44.0000 −1.61857 −0.809283 0.587419i \(-0.800144\pi\)
−0.809283 + 0.587419i \(0.800144\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) 0 0
\(745\) −4.00000 −0.146549
\(746\) 0 0
\(747\) 16.0000 0.585409
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) −32.0000 −1.16153
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 12.0000 0.433861
\(766\) 0 0
\(767\) −72.0000 −2.59977
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 2.00000 0.0720282
\(772\) 0 0
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.00000 −0.0717496
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 28.0000 0.999363
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 60.0000 2.13066
\(794\) 0 0
\(795\) −4.00000 −0.141865
\(796\) 0 0
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 40.0000 1.41157
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 42.0000 1.45872 0.729360 0.684130i \(-0.239818\pi\)
0.729360 + 0.684130i \(0.239818\pi\)
\(830\) 0 0
\(831\) 26.0000 0.901930
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −32.0000 −1.10741
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) 46.0000 1.58245
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 0 0
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) −50.0000 −1.71197 −0.855984 0.517003i \(-0.827048\pi\)
−0.855984 + 0.517003i \(0.827048\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) 38.0000 1.29806 0.649028 0.760765i \(-0.275176\pi\)
0.649028 + 0.760765i \(0.275176\pi\)
\(858\) 0 0
\(859\) 36.0000 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −48.0000 −1.62829
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 0 0
\(879\) −26.0000 −0.876958
\(880\) 0 0
\(881\) −58.0000 −1.95407 −0.977035 0.213080i \(-0.931651\pi\)
−0.977035 + 0.213080i \(0.931651\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 40.0000 1.34307 0.671534 0.740973i \(-0.265636\pi\)
0.671534 + 0.740973i \(0.265636\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 4.00000 0.133855
\(894\) 0 0
\(895\) −8.00000 −0.267411
\(896\) 0 0
\(897\) 48.0000 1.60267
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) −4.00000 −0.133112
\(904\) 0 0
\(905\) −12.0000 −0.398893
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 64.0000 2.11809
\(914\) 0 0
\(915\) 20.0000 0.661180
\(916\) 0 0
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 28.0000 0.922631
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) 16.0000 0.525509
\(928\) 0 0
\(929\) 46.0000 1.50921 0.754606 0.656179i \(-0.227828\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 28.0000 0.916679
\(934\) 0 0
\(935\) 48.0000 1.56977
\(936\) 0 0
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) −60.0000 −1.94768
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) 48.0000 1.55324
\(956\) 0 0
\(957\) 24.0000 0.775810
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) 4.00000 0.128765
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) −6.00000 −0.192154
\(976\) 0 0
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 4.00000 0.127321
\(988\) 0 0
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) 32.0000 1.01549
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3192.2.a.i.1.1 1
3.2 odd 2 9576.2.a.c.1.1 1
4.3 odd 2 6384.2.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3192.2.a.i.1.1 1 1.1 even 1 trivial
6384.2.a.bf.1.1 1 4.3 odd 2
9576.2.a.c.1.1 1 3.2 odd 2