Properties

Label 3192.2.a
Level $3192$
Weight $2$
Character orbit 3192.a
Rep. character $\chi_{3192}(1,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $28$
Sturm bound $1280$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3192.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(1280\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3192))\).

Total New Old
Modular forms 656 56 600
Cusp forms 625 56 569
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(5\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(3\)
Plus space\(+\)\(24\)
Minus space\(-\)\(32\)

Trace form

\( 56 q - 8 q^{5} + 56 q^{9} + O(q^{10}) \) \( 56 q - 8 q^{5} + 56 q^{9} - 8 q^{13} - 8 q^{17} + 56 q^{25} + 8 q^{29} + 16 q^{31} - 8 q^{37} + 16 q^{39} + 8 q^{41} - 16 q^{43} - 8 q^{45} - 48 q^{47} + 56 q^{49} + 8 q^{51} - 8 q^{53} + 16 q^{55} + 4 q^{57} - 32 q^{59} + 16 q^{61} - 16 q^{65} + 24 q^{67} - 32 q^{79} + 56 q^{81} + 16 q^{83} + 40 q^{89} + 8 q^{91} + 16 q^{93} + 8 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3192))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7 19
3192.2.a.a 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.a \(0\) \(-1\) \(-4\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}-q^{7}+q^{9}-2q^{13}+4q^{15}+\cdots\)
3192.2.a.b 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.b \(0\) \(-1\) \(-2\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}-q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
3192.2.a.c 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.c \(0\) \(-1\) \(-2\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}-q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\)
3192.2.a.d 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.d \(0\) \(-1\) \(-2\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{5}+q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\)
3192.2.a.e 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.e \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-2q^{13}+q^{19}+q^{21}+\cdots\)
3192.2.a.f 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.f \(0\) \(-1\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
3192.2.a.g 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.g \(0\) \(-1\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+2q^{11}-4q^{13}+\cdots\)
3192.2.a.h 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.h \(0\) \(-1\) \(2\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}-4q^{11}-6q^{13}+\cdots\)
3192.2.a.i 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.i \(0\) \(-1\) \(2\) \(-1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}+4q^{11}-6q^{13}+\cdots\)
3192.2.a.j 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.j \(0\) \(-1\) \(2\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-q^{7}+q^{9}+6q^{11}-2q^{13}+\cdots\)
3192.2.a.k 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.k \(0\) \(1\) \(-4\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\)
3192.2.a.l 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.l \(0\) \(1\) \(-4\) \(1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{5}+q^{7}+q^{9}+2q^{11}-4q^{13}+\cdots\)
3192.2.a.m 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.m \(0\) \(1\) \(-2\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\)
3192.2.a.n 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.n \(0\) \(1\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+6q^{11}+4q^{13}+\cdots\)
3192.2.a.o 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.o \(0\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-2q^{13}-8q^{17}+\cdots\)
3192.2.a.p 3192.a 1.a $1$ $25.488$ \(\Q\) None 3192.2.a.p \(0\) \(1\) \(2\) \(-1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}-q^{7}+q^{9}-6q^{11}-2q^{13}+\cdots\)
3192.2.a.q 3192.a 1.a $2$ $25.488$ \(\Q(\sqrt{3}) \) None 3192.2.a.q \(0\) \(-2\) \(2\) \(2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+q^{7}+q^{9}+(-2+\cdots)q^{13}+\cdots\)
3192.2.a.r 3192.a 1.a $2$ $25.488$ \(\Q(\sqrt{2}) \) None 3192.2.a.r \(0\) \(2\) \(-4\) \(-2\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-2+\beta )q^{5}-q^{7}+q^{9}+2\beta q^{11}+\cdots\)
3192.2.a.s 3192.a 1.a $2$ $25.488$ \(\Q(\sqrt{3}) \) None 3192.2.a.s \(0\) \(2\) \(-2\) \(2\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1+\beta )q^{5}+q^{7}+q^{9}-4q^{11}+\cdots\)
3192.2.a.t 3192.a 1.a $2$ $25.488$ \(\Q(\sqrt{3}) \) None 3192.2.a.t \(0\) \(2\) \(0\) \(-2\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{5}-q^{7}+q^{9}-2q^{13}+\beta q^{15}+\cdots\)
3192.2.a.u 3192.a 1.a $3$ $25.488$ 3.3.568.1 None 3192.2.a.u \(0\) \(-3\) \(0\) \(-3\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{1}q^{5}-q^{7}+q^{9}+(-1-\beta _{1}+\cdots)q^{11}+\cdots\)
3192.2.a.v 3192.a 1.a $3$ $25.488$ 3.3.316.1 None 3192.2.a.v \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+(-1+\beta _{1})q^{11}+\cdots\)
3192.2.a.w 3192.a 1.a $4$ $25.488$ 4.4.13068.1 None 3192.2.a.w \(0\) \(-4\) \(-4\) \(4\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta _{2})q^{5}+q^{7}+q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
3192.2.a.x 3192.a 1.a $4$ $25.488$ 4.4.9248.1 None 3192.2.a.x \(0\) \(-4\) \(0\) \(-4\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{1}q^{5}-q^{7}+q^{9}+(-\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
3192.2.a.y 3192.a 1.a $4$ $25.488$ 4.4.7232.1 None 3192.2.a.y \(0\) \(4\) \(4\) \(-4\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-\beta _{1})q^{5}-q^{7}+q^{9}-\beta _{2}q^{11}+\cdots\)
3192.2.a.z 3192.a 1.a $4$ $25.488$ 4.4.2225.1 None 3192.2.a.z \(0\) \(4\) \(4\) \(4\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-\beta _{2})q^{5}+q^{7}+q^{9}+(1+\beta _{3})q^{11}+\cdots\)
3192.2.a.ba 3192.a 1.a $5$ $25.488$ 5.5.135076.1 None 3192.2.a.ba \(0\) \(-5\) \(2\) \(5\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta _{1}q^{5}+q^{7}+q^{9}-\beta _{4}q^{11}+\cdots\)
3192.2.a.bb 3192.a 1.a $5$ $25.488$ 5.5.401584.1 None 3192.2.a.bb \(0\) \(5\) \(2\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{1}q^{5}+q^{7}+q^{9}+(1-\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3192))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3192)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(456))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1064))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1596))\)\(^{\oplus 2}\)