Properties

Label 3174.2.a.s.1.2
Level $3174$
Weight $2$
Character 3174.1
Self dual yes
Analytic conductor $25.345$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3174,2,Mod(1,3174)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3174, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3174.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3174 = 2 \cdot 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3174.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,2,2,2,2,0,2,2,2,6,2,0,0,2,2,8,2,2,2,0,6,0,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.3445176016\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 3174.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +3.23607 q^{5} +1.00000 q^{6} -4.47214 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.23607 q^{10} +0.763932 q^{11} +1.00000 q^{12} -4.47214 q^{13} -4.47214 q^{14} +3.23607 q^{15} +1.00000 q^{16} +4.00000 q^{17} +1.00000 q^{18} +7.70820 q^{19} +3.23607 q^{20} -4.47214 q^{21} +0.763932 q^{22} +1.00000 q^{24} +5.47214 q^{25} -4.47214 q^{26} +1.00000 q^{27} -4.47214 q^{28} +4.47214 q^{29} +3.23607 q^{30} +6.47214 q^{31} +1.00000 q^{32} +0.763932 q^{33} +4.00000 q^{34} -14.4721 q^{35} +1.00000 q^{36} -6.76393 q^{37} +7.70820 q^{38} -4.47214 q^{39} +3.23607 q^{40} -2.00000 q^{41} -4.47214 q^{42} +9.23607 q^{43} +0.763932 q^{44} +3.23607 q^{45} +4.00000 q^{47} +1.00000 q^{48} +13.0000 q^{49} +5.47214 q^{50} +4.00000 q^{51} -4.47214 q^{52} -0.763932 q^{53} +1.00000 q^{54} +2.47214 q^{55} -4.47214 q^{56} +7.70820 q^{57} +4.47214 q^{58} +8.94427 q^{59} +3.23607 q^{60} -5.23607 q^{61} +6.47214 q^{62} -4.47214 q^{63} +1.00000 q^{64} -14.4721 q^{65} +0.763932 q^{66} +3.70820 q^{67} +4.00000 q^{68} -14.4721 q^{70} -8.94427 q^{71} +1.00000 q^{72} +4.47214 q^{73} -6.76393 q^{74} +5.47214 q^{75} +7.70820 q^{76} -3.41641 q^{77} -4.47214 q^{78} +4.47214 q^{79} +3.23607 q^{80} +1.00000 q^{81} -2.00000 q^{82} -8.76393 q^{83} -4.47214 q^{84} +12.9443 q^{85} +9.23607 q^{86} +4.47214 q^{87} +0.763932 q^{88} +1.52786 q^{89} +3.23607 q^{90} +20.0000 q^{91} +6.47214 q^{93} +4.00000 q^{94} +24.9443 q^{95} +1.00000 q^{96} +8.47214 q^{97} +13.0000 q^{98} +0.763932 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} + 2 q^{8} + 2 q^{9} + 2 q^{10} + 6 q^{11} + 2 q^{12} + 2 q^{15} + 2 q^{16} + 8 q^{17} + 2 q^{18} + 2 q^{19} + 2 q^{20} + 6 q^{22} + 2 q^{24} + 2 q^{25}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 1.00000 0.408248
\(7\) −4.47214 −1.69031 −0.845154 0.534522i \(-0.820491\pi\)
−0.845154 + 0.534522i \(0.820491\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 3.23607 1.02333
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.47214 −1.24035 −0.620174 0.784465i \(-0.712938\pi\)
−0.620174 + 0.784465i \(0.712938\pi\)
\(14\) −4.47214 −1.19523
\(15\) 3.23607 0.835549
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 1.00000 0.235702
\(19\) 7.70820 1.76838 0.884192 0.467124i \(-0.154710\pi\)
0.884192 + 0.467124i \(0.154710\pi\)
\(20\) 3.23607 0.723607
\(21\) −4.47214 −0.975900
\(22\) 0.763932 0.162871
\(23\) 0 0
\(24\) 1.00000 0.204124
\(25\) 5.47214 1.09443
\(26\) −4.47214 −0.877058
\(27\) 1.00000 0.192450
\(28\) −4.47214 −0.845154
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 3.23607 0.590822
\(31\) 6.47214 1.16243 0.581215 0.813750i \(-0.302578\pi\)
0.581215 + 0.813750i \(0.302578\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.763932 0.132983
\(34\) 4.00000 0.685994
\(35\) −14.4721 −2.44624
\(36\) 1.00000 0.166667
\(37\) −6.76393 −1.11198 −0.555992 0.831188i \(-0.687661\pi\)
−0.555992 + 0.831188i \(0.687661\pi\)
\(38\) 7.70820 1.25044
\(39\) −4.47214 −0.716115
\(40\) 3.23607 0.511667
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) −4.47214 −0.690066
\(43\) 9.23607 1.40849 0.704244 0.709958i \(-0.251286\pi\)
0.704244 + 0.709958i \(0.251286\pi\)
\(44\) 0.763932 0.115167
\(45\) 3.23607 0.482405
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 1.00000 0.144338
\(49\) 13.0000 1.85714
\(50\) 5.47214 0.773877
\(51\) 4.00000 0.560112
\(52\) −4.47214 −0.620174
\(53\) −0.763932 −0.104934 −0.0524671 0.998623i \(-0.516708\pi\)
−0.0524671 + 0.998623i \(0.516708\pi\)
\(54\) 1.00000 0.136083
\(55\) 2.47214 0.333343
\(56\) −4.47214 −0.597614
\(57\) 7.70820 1.02098
\(58\) 4.47214 0.587220
\(59\) 8.94427 1.16445 0.582223 0.813029i \(-0.302183\pi\)
0.582223 + 0.813029i \(0.302183\pi\)
\(60\) 3.23607 0.417775
\(61\) −5.23607 −0.670410 −0.335205 0.942145i \(-0.608806\pi\)
−0.335205 + 0.942145i \(0.608806\pi\)
\(62\) 6.47214 0.821962
\(63\) −4.47214 −0.563436
\(64\) 1.00000 0.125000
\(65\) −14.4721 −1.79505
\(66\) 0.763932 0.0940335
\(67\) 3.70820 0.453029 0.226515 0.974008i \(-0.427267\pi\)
0.226515 + 0.974008i \(0.427267\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) −14.4721 −1.72975
\(71\) −8.94427 −1.06149 −0.530745 0.847532i \(-0.678088\pi\)
−0.530745 + 0.847532i \(0.678088\pi\)
\(72\) 1.00000 0.117851
\(73\) 4.47214 0.523424 0.261712 0.965146i \(-0.415713\pi\)
0.261712 + 0.965146i \(0.415713\pi\)
\(74\) −6.76393 −0.786291
\(75\) 5.47214 0.631868
\(76\) 7.70820 0.884192
\(77\) −3.41641 −0.389336
\(78\) −4.47214 −0.506370
\(79\) 4.47214 0.503155 0.251577 0.967837i \(-0.419051\pi\)
0.251577 + 0.967837i \(0.419051\pi\)
\(80\) 3.23607 0.361803
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) −8.76393 −0.961967 −0.480983 0.876730i \(-0.659720\pi\)
−0.480983 + 0.876730i \(0.659720\pi\)
\(84\) −4.47214 −0.487950
\(85\) 12.9443 1.40400
\(86\) 9.23607 0.995951
\(87\) 4.47214 0.479463
\(88\) 0.763932 0.0814354
\(89\) 1.52786 0.161953 0.0809766 0.996716i \(-0.474196\pi\)
0.0809766 + 0.996716i \(0.474196\pi\)
\(90\) 3.23607 0.341112
\(91\) 20.0000 2.09657
\(92\) 0 0
\(93\) 6.47214 0.671129
\(94\) 4.00000 0.412568
\(95\) 24.9443 2.55923
\(96\) 1.00000 0.102062
\(97\) 8.47214 0.860215 0.430108 0.902778i \(-0.358476\pi\)
0.430108 + 0.902778i \(0.358476\pi\)
\(98\) 13.0000 1.31320
\(99\) 0.763932 0.0767781
\(100\) 5.47214 0.547214
\(101\) −4.47214 −0.444994 −0.222497 0.974933i \(-0.571421\pi\)
−0.222497 + 0.974933i \(0.571421\pi\)
\(102\) 4.00000 0.396059
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) −4.47214 −0.438529
\(105\) −14.4721 −1.41234
\(106\) −0.763932 −0.0741996
\(107\) −18.6525 −1.80320 −0.901601 0.432568i \(-0.857608\pi\)
−0.901601 + 0.432568i \(0.857608\pi\)
\(108\) 1.00000 0.0962250
\(109\) −9.23607 −0.884655 −0.442327 0.896854i \(-0.645847\pi\)
−0.442327 + 0.896854i \(0.645847\pi\)
\(110\) 2.47214 0.235709
\(111\) −6.76393 −0.642004
\(112\) −4.47214 −0.422577
\(113\) 14.4721 1.36142 0.680712 0.732551i \(-0.261671\pi\)
0.680712 + 0.732551i \(0.261671\pi\)
\(114\) 7.70820 0.721939
\(115\) 0 0
\(116\) 4.47214 0.415227
\(117\) −4.47214 −0.413449
\(118\) 8.94427 0.823387
\(119\) −17.8885 −1.63984
\(120\) 3.23607 0.295411
\(121\) −10.4164 −0.946946
\(122\) −5.23607 −0.474051
\(123\) −2.00000 −0.180334
\(124\) 6.47214 0.581215
\(125\) 1.52786 0.136656
\(126\) −4.47214 −0.398410
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.23607 0.813190
\(130\) −14.4721 −1.26929
\(131\) −18.4721 −1.61392 −0.806959 0.590607i \(-0.798888\pi\)
−0.806959 + 0.590607i \(0.798888\pi\)
\(132\) 0.763932 0.0664917
\(133\) −34.4721 −2.98911
\(134\) 3.70820 0.320340
\(135\) 3.23607 0.278516
\(136\) 4.00000 0.342997
\(137\) −20.9443 −1.78939 −0.894695 0.446678i \(-0.852607\pi\)
−0.894695 + 0.446678i \(0.852607\pi\)
\(138\) 0 0
\(139\) 0.944272 0.0800921 0.0400460 0.999198i \(-0.487250\pi\)
0.0400460 + 0.999198i \(0.487250\pi\)
\(140\) −14.4721 −1.22312
\(141\) 4.00000 0.336861
\(142\) −8.94427 −0.750587
\(143\) −3.41641 −0.285694
\(144\) 1.00000 0.0833333
\(145\) 14.4721 1.20185
\(146\) 4.47214 0.370117
\(147\) 13.0000 1.07222
\(148\) −6.76393 −0.555992
\(149\) −1.70820 −0.139942 −0.0699708 0.997549i \(-0.522291\pi\)
−0.0699708 + 0.997549i \(0.522291\pi\)
\(150\) 5.47214 0.446798
\(151\) −5.52786 −0.449851 −0.224926 0.974376i \(-0.572214\pi\)
−0.224926 + 0.974376i \(0.572214\pi\)
\(152\) 7.70820 0.625218
\(153\) 4.00000 0.323381
\(154\) −3.41641 −0.275302
\(155\) 20.9443 1.68228
\(156\) −4.47214 −0.358057
\(157\) −24.6525 −1.96748 −0.983741 0.179594i \(-0.942522\pi\)
−0.983741 + 0.179594i \(0.942522\pi\)
\(158\) 4.47214 0.355784
\(159\) −0.763932 −0.0605838
\(160\) 3.23607 0.255834
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 6.47214 0.506937 0.253468 0.967344i \(-0.418429\pi\)
0.253468 + 0.967344i \(0.418429\pi\)
\(164\) −2.00000 −0.156174
\(165\) 2.47214 0.192456
\(166\) −8.76393 −0.680213
\(167\) −0.944272 −0.0730700 −0.0365350 0.999332i \(-0.511632\pi\)
−0.0365350 + 0.999332i \(0.511632\pi\)
\(168\) −4.47214 −0.345033
\(169\) 7.00000 0.538462
\(170\) 12.9443 0.992780
\(171\) 7.70820 0.589461
\(172\) 9.23607 0.704244
\(173\) 9.41641 0.715916 0.357958 0.933738i \(-0.383473\pi\)
0.357958 + 0.933738i \(0.383473\pi\)
\(174\) 4.47214 0.339032
\(175\) −24.4721 −1.84992
\(176\) 0.763932 0.0575835
\(177\) 8.94427 0.672293
\(178\) 1.52786 0.114518
\(179\) −7.41641 −0.554328 −0.277164 0.960823i \(-0.589395\pi\)
−0.277164 + 0.960823i \(0.589395\pi\)
\(180\) 3.23607 0.241202
\(181\) 6.76393 0.502759 0.251380 0.967889i \(-0.419116\pi\)
0.251380 + 0.967889i \(0.419116\pi\)
\(182\) 20.0000 1.48250
\(183\) −5.23607 −0.387061
\(184\) 0 0
\(185\) −21.8885 −1.60928
\(186\) 6.47214 0.474560
\(187\) 3.05573 0.223457
\(188\) 4.00000 0.291730
\(189\) −4.47214 −0.325300
\(190\) 24.9443 1.80965
\(191\) 2.47214 0.178877 0.0894387 0.995992i \(-0.471493\pi\)
0.0894387 + 0.995992i \(0.471493\pi\)
\(192\) 1.00000 0.0721688
\(193\) −11.8885 −0.855756 −0.427878 0.903836i \(-0.640739\pi\)
−0.427878 + 0.903836i \(0.640739\pi\)
\(194\) 8.47214 0.608264
\(195\) −14.4721 −1.03637
\(196\) 13.0000 0.928571
\(197\) −14.9443 −1.06474 −0.532368 0.846513i \(-0.678698\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(198\) 0.763932 0.0542903
\(199\) 9.41641 0.667511 0.333756 0.942660i \(-0.391684\pi\)
0.333756 + 0.942660i \(0.391684\pi\)
\(200\) 5.47214 0.386938
\(201\) 3.70820 0.261557
\(202\) −4.47214 −0.314658
\(203\) −20.0000 −1.40372
\(204\) 4.00000 0.280056
\(205\) −6.47214 −0.452034
\(206\) 6.00000 0.418040
\(207\) 0 0
\(208\) −4.47214 −0.310087
\(209\) 5.88854 0.407319
\(210\) −14.4721 −0.998672
\(211\) 3.41641 0.235195 0.117598 0.993061i \(-0.462481\pi\)
0.117598 + 0.993061i \(0.462481\pi\)
\(212\) −0.763932 −0.0524671
\(213\) −8.94427 −0.612851
\(214\) −18.6525 −1.27506
\(215\) 29.8885 2.03838
\(216\) 1.00000 0.0680414
\(217\) −28.9443 −1.96487
\(218\) −9.23607 −0.625545
\(219\) 4.47214 0.302199
\(220\) 2.47214 0.166671
\(221\) −17.8885 −1.20331
\(222\) −6.76393 −0.453965
\(223\) −7.41641 −0.496639 −0.248320 0.968678i \(-0.579878\pi\)
−0.248320 + 0.968678i \(0.579878\pi\)
\(224\) −4.47214 −0.298807
\(225\) 5.47214 0.364809
\(226\) 14.4721 0.962672
\(227\) 4.76393 0.316193 0.158097 0.987424i \(-0.449464\pi\)
0.158097 + 0.987424i \(0.449464\pi\)
\(228\) 7.70820 0.510488
\(229\) −4.29180 −0.283610 −0.141805 0.989895i \(-0.545291\pi\)
−0.141805 + 0.989895i \(0.545291\pi\)
\(230\) 0 0
\(231\) −3.41641 −0.224783
\(232\) 4.47214 0.293610
\(233\) −15.8885 −1.04089 −0.520447 0.853894i \(-0.674235\pi\)
−0.520447 + 0.853894i \(0.674235\pi\)
\(234\) −4.47214 −0.292353
\(235\) 12.9443 0.844391
\(236\) 8.94427 0.582223
\(237\) 4.47214 0.290496
\(238\) −17.8885 −1.15954
\(239\) 12.9443 0.837295 0.418648 0.908149i \(-0.362504\pi\)
0.418648 + 0.908149i \(0.362504\pi\)
\(240\) 3.23607 0.208887
\(241\) 3.52786 0.227250 0.113625 0.993524i \(-0.463754\pi\)
0.113625 + 0.993524i \(0.463754\pi\)
\(242\) −10.4164 −0.669592
\(243\) 1.00000 0.0641500
\(244\) −5.23607 −0.335205
\(245\) 42.0689 2.68768
\(246\) −2.00000 −0.127515
\(247\) −34.4721 −2.19341
\(248\) 6.47214 0.410981
\(249\) −8.76393 −0.555392
\(250\) 1.52786 0.0966306
\(251\) 6.29180 0.397135 0.198567 0.980087i \(-0.436371\pi\)
0.198567 + 0.980087i \(0.436371\pi\)
\(252\) −4.47214 −0.281718
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 12.9443 0.810602
\(256\) 1.00000 0.0625000
\(257\) 23.8885 1.49013 0.745063 0.666994i \(-0.232419\pi\)
0.745063 + 0.666994i \(0.232419\pi\)
\(258\) 9.23607 0.575012
\(259\) 30.2492 1.87960
\(260\) −14.4721 −0.897524
\(261\) 4.47214 0.276818
\(262\) −18.4721 −1.14121
\(263\) −7.05573 −0.435075 −0.217537 0.976052i \(-0.569802\pi\)
−0.217537 + 0.976052i \(0.569802\pi\)
\(264\) 0.763932 0.0470168
\(265\) −2.47214 −0.151862
\(266\) −34.4721 −2.11362
\(267\) 1.52786 0.0935038
\(268\) 3.70820 0.226515
\(269\) −30.9443 −1.88671 −0.943353 0.331791i \(-0.892347\pi\)
−0.943353 + 0.331791i \(0.892347\pi\)
\(270\) 3.23607 0.196941
\(271\) 0.944272 0.0573604 0.0286802 0.999589i \(-0.490870\pi\)
0.0286802 + 0.999589i \(0.490870\pi\)
\(272\) 4.00000 0.242536
\(273\) 20.0000 1.21046
\(274\) −20.9443 −1.26529
\(275\) 4.18034 0.252084
\(276\) 0 0
\(277\) −11.5279 −0.692642 −0.346321 0.938116i \(-0.612569\pi\)
−0.346321 + 0.938116i \(0.612569\pi\)
\(278\) 0.944272 0.0566337
\(279\) 6.47214 0.387477
\(280\) −14.4721 −0.864876
\(281\) 22.4721 1.34058 0.670288 0.742101i \(-0.266171\pi\)
0.670288 + 0.742101i \(0.266171\pi\)
\(282\) 4.00000 0.238197
\(283\) 26.1803 1.55626 0.778130 0.628103i \(-0.216169\pi\)
0.778130 + 0.628103i \(0.216169\pi\)
\(284\) −8.94427 −0.530745
\(285\) 24.9443 1.47757
\(286\) −3.41641 −0.202016
\(287\) 8.94427 0.527964
\(288\) 1.00000 0.0589256
\(289\) −1.00000 −0.0588235
\(290\) 14.4721 0.849833
\(291\) 8.47214 0.496645
\(292\) 4.47214 0.261712
\(293\) −13.7082 −0.800842 −0.400421 0.916331i \(-0.631136\pi\)
−0.400421 + 0.916331i \(0.631136\pi\)
\(294\) 13.0000 0.758175
\(295\) 28.9443 1.68520
\(296\) −6.76393 −0.393146
\(297\) 0.763932 0.0443278
\(298\) −1.70820 −0.0989536
\(299\) 0 0
\(300\) 5.47214 0.315934
\(301\) −41.3050 −2.38078
\(302\) −5.52786 −0.318093
\(303\) −4.47214 −0.256917
\(304\) 7.70820 0.442096
\(305\) −16.9443 −0.970226
\(306\) 4.00000 0.228665
\(307\) −11.4164 −0.651569 −0.325784 0.945444i \(-0.605628\pi\)
−0.325784 + 0.945444i \(0.605628\pi\)
\(308\) −3.41641 −0.194668
\(309\) 6.00000 0.341328
\(310\) 20.9443 1.18955
\(311\) −3.05573 −0.173274 −0.0866372 0.996240i \(-0.527612\pi\)
−0.0866372 + 0.996240i \(0.527612\pi\)
\(312\) −4.47214 −0.253185
\(313\) −24.4721 −1.38325 −0.691623 0.722258i \(-0.743104\pi\)
−0.691623 + 0.722258i \(0.743104\pi\)
\(314\) −24.6525 −1.39122
\(315\) −14.4721 −0.815412
\(316\) 4.47214 0.251577
\(317\) 28.4721 1.59915 0.799577 0.600563i \(-0.205057\pi\)
0.799577 + 0.600563i \(0.205057\pi\)
\(318\) −0.763932 −0.0428392
\(319\) 3.41641 0.191282
\(320\) 3.23607 0.180902
\(321\) −18.6525 −1.04108
\(322\) 0 0
\(323\) 30.8328 1.71558
\(324\) 1.00000 0.0555556
\(325\) −24.4721 −1.35747
\(326\) 6.47214 0.358458
\(327\) −9.23607 −0.510756
\(328\) −2.00000 −0.110432
\(329\) −17.8885 −0.986227
\(330\) 2.47214 0.136087
\(331\) −1.52786 −0.0839790 −0.0419895 0.999118i \(-0.513370\pi\)
−0.0419895 + 0.999118i \(0.513370\pi\)
\(332\) −8.76393 −0.480983
\(333\) −6.76393 −0.370661
\(334\) −0.944272 −0.0516683
\(335\) 12.0000 0.655630
\(336\) −4.47214 −0.243975
\(337\) −15.8885 −0.865504 −0.432752 0.901513i \(-0.642457\pi\)
−0.432752 + 0.901513i \(0.642457\pi\)
\(338\) 7.00000 0.380750
\(339\) 14.4721 0.786019
\(340\) 12.9443 0.702002
\(341\) 4.94427 0.267747
\(342\) 7.70820 0.416812
\(343\) −26.8328 −1.44884
\(344\) 9.23607 0.497975
\(345\) 0 0
\(346\) 9.41641 0.506229
\(347\) 21.5279 1.15568 0.577838 0.816151i \(-0.303896\pi\)
0.577838 + 0.816151i \(0.303896\pi\)
\(348\) 4.47214 0.239732
\(349\) −31.8885 −1.70695 −0.853477 0.521130i \(-0.825511\pi\)
−0.853477 + 0.521130i \(0.825511\pi\)
\(350\) −24.4721 −1.30809
\(351\) −4.47214 −0.238705
\(352\) 0.763932 0.0407177
\(353\) 31.8885 1.69726 0.848628 0.528990i \(-0.177429\pi\)
0.848628 + 0.528990i \(0.177429\pi\)
\(354\) 8.94427 0.475383
\(355\) −28.9443 −1.53620
\(356\) 1.52786 0.0809766
\(357\) −17.8885 −0.946762
\(358\) −7.41641 −0.391969
\(359\) 33.3050 1.75777 0.878884 0.477035i \(-0.158289\pi\)
0.878884 + 0.477035i \(0.158289\pi\)
\(360\) 3.23607 0.170556
\(361\) 40.4164 2.12718
\(362\) 6.76393 0.355504
\(363\) −10.4164 −0.546720
\(364\) 20.0000 1.04828
\(365\) 14.4721 0.757506
\(366\) −5.23607 −0.273694
\(367\) 17.4164 0.909129 0.454565 0.890714i \(-0.349795\pi\)
0.454565 + 0.890714i \(0.349795\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) −21.8885 −1.13793
\(371\) 3.41641 0.177371
\(372\) 6.47214 0.335565
\(373\) −13.5967 −0.704013 −0.352006 0.935998i \(-0.614500\pi\)
−0.352006 + 0.935998i \(0.614500\pi\)
\(374\) 3.05573 0.158008
\(375\) 1.52786 0.0788986
\(376\) 4.00000 0.206284
\(377\) −20.0000 −1.03005
\(378\) −4.47214 −0.230022
\(379\) −0.291796 −0.0149886 −0.00749428 0.999972i \(-0.502386\pi\)
−0.00749428 + 0.999972i \(0.502386\pi\)
\(380\) 24.9443 1.27961
\(381\) −4.00000 −0.204926
\(382\) 2.47214 0.126485
\(383\) −24.9443 −1.27459 −0.637296 0.770619i \(-0.719947\pi\)
−0.637296 + 0.770619i \(0.719947\pi\)
\(384\) 1.00000 0.0510310
\(385\) −11.0557 −0.563452
\(386\) −11.8885 −0.605111
\(387\) 9.23607 0.469496
\(388\) 8.47214 0.430108
\(389\) −10.2918 −0.521815 −0.260907 0.965364i \(-0.584022\pi\)
−0.260907 + 0.965364i \(0.584022\pi\)
\(390\) −14.4721 −0.732825
\(391\) 0 0
\(392\) 13.0000 0.656599
\(393\) −18.4721 −0.931796
\(394\) −14.9443 −0.752882
\(395\) 14.4721 0.728172
\(396\) 0.763932 0.0383890
\(397\) 9.05573 0.454494 0.227247 0.973837i \(-0.427028\pi\)
0.227247 + 0.973837i \(0.427028\pi\)
\(398\) 9.41641 0.472002
\(399\) −34.4721 −1.72577
\(400\) 5.47214 0.273607
\(401\) 8.94427 0.446656 0.223328 0.974743i \(-0.428308\pi\)
0.223328 + 0.974743i \(0.428308\pi\)
\(402\) 3.70820 0.184948
\(403\) −28.9443 −1.44182
\(404\) −4.47214 −0.222497
\(405\) 3.23607 0.160802
\(406\) −20.0000 −0.992583
\(407\) −5.16718 −0.256128
\(408\) 4.00000 0.198030
\(409\) −0.111456 −0.00551115 −0.00275558 0.999996i \(-0.500877\pi\)
−0.00275558 + 0.999996i \(0.500877\pi\)
\(410\) −6.47214 −0.319636
\(411\) −20.9443 −1.03310
\(412\) 6.00000 0.295599
\(413\) −40.0000 −1.96827
\(414\) 0 0
\(415\) −28.3607 −1.39217
\(416\) −4.47214 −0.219265
\(417\) 0.944272 0.0462412
\(418\) 5.88854 0.288018
\(419\) 30.0689 1.46896 0.734481 0.678630i \(-0.237426\pi\)
0.734481 + 0.678630i \(0.237426\pi\)
\(420\) −14.4721 −0.706168
\(421\) 5.23607 0.255190 0.127595 0.991826i \(-0.459274\pi\)
0.127595 + 0.991826i \(0.459274\pi\)
\(422\) 3.41641 0.166308
\(423\) 4.00000 0.194487
\(424\) −0.763932 −0.0370998
\(425\) 21.8885 1.06175
\(426\) −8.94427 −0.433351
\(427\) 23.4164 1.13320
\(428\) −18.6525 −0.901601
\(429\) −3.41641 −0.164946
\(430\) 29.8885 1.44135
\(431\) −3.41641 −0.164563 −0.0822813 0.996609i \(-0.526221\pi\)
−0.0822813 + 0.996609i \(0.526221\pi\)
\(432\) 1.00000 0.0481125
\(433\) −5.41641 −0.260296 −0.130148 0.991495i \(-0.541545\pi\)
−0.130148 + 0.991495i \(0.541545\pi\)
\(434\) −28.9443 −1.38937
\(435\) 14.4721 0.693886
\(436\) −9.23607 −0.442327
\(437\) 0 0
\(438\) 4.47214 0.213687
\(439\) 36.9443 1.76325 0.881627 0.471947i \(-0.156449\pi\)
0.881627 + 0.471947i \(0.156449\pi\)
\(440\) 2.47214 0.117854
\(441\) 13.0000 0.619048
\(442\) −17.8885 −0.850871
\(443\) −32.9443 −1.56523 −0.782615 0.622506i \(-0.786115\pi\)
−0.782615 + 0.622506i \(0.786115\pi\)
\(444\) −6.76393 −0.321002
\(445\) 4.94427 0.234381
\(446\) −7.41641 −0.351177
\(447\) −1.70820 −0.0807953
\(448\) −4.47214 −0.211289
\(449\) −19.8885 −0.938598 −0.469299 0.883039i \(-0.655493\pi\)
−0.469299 + 0.883039i \(0.655493\pi\)
\(450\) 5.47214 0.257959
\(451\) −1.52786 −0.0719443
\(452\) 14.4721 0.680712
\(453\) −5.52786 −0.259722
\(454\) 4.76393 0.223582
\(455\) 64.7214 3.03418
\(456\) 7.70820 0.360970
\(457\) −36.4721 −1.70609 −0.853047 0.521834i \(-0.825248\pi\)
−0.853047 + 0.521834i \(0.825248\pi\)
\(458\) −4.29180 −0.200542
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 22.0000 1.02464 0.512321 0.858794i \(-0.328786\pi\)
0.512321 + 0.858794i \(0.328786\pi\)
\(462\) −3.41641 −0.158946
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 4.47214 0.207614
\(465\) 20.9443 0.971267
\(466\) −15.8885 −0.736023
\(467\) 40.1803 1.85932 0.929662 0.368413i \(-0.120099\pi\)
0.929662 + 0.368413i \(0.120099\pi\)
\(468\) −4.47214 −0.206725
\(469\) −16.5836 −0.765759
\(470\) 12.9443 0.597075
\(471\) −24.6525 −1.13593
\(472\) 8.94427 0.411693
\(473\) 7.05573 0.324423
\(474\) 4.47214 0.205412
\(475\) 42.1803 1.93537
\(476\) −17.8885 −0.819920
\(477\) −0.763932 −0.0349780
\(478\) 12.9443 0.592057
\(479\) 11.0557 0.505149 0.252575 0.967577i \(-0.418723\pi\)
0.252575 + 0.967577i \(0.418723\pi\)
\(480\) 3.23607 0.147706
\(481\) 30.2492 1.37925
\(482\) 3.52786 0.160690
\(483\) 0 0
\(484\) −10.4164 −0.473473
\(485\) 27.4164 1.24491
\(486\) 1.00000 0.0453609
\(487\) −25.8885 −1.17312 −0.586561 0.809905i \(-0.699519\pi\)
−0.586561 + 0.809905i \(0.699519\pi\)
\(488\) −5.23607 −0.237026
\(489\) 6.47214 0.292680
\(490\) 42.0689 1.90048
\(491\) −33.3050 −1.50303 −0.751516 0.659715i \(-0.770677\pi\)
−0.751516 + 0.659715i \(0.770677\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 17.8885 0.805659
\(494\) −34.4721 −1.55097
\(495\) 2.47214 0.111114
\(496\) 6.47214 0.290607
\(497\) 40.0000 1.79425
\(498\) −8.76393 −0.392721
\(499\) 27.4164 1.22733 0.613663 0.789568i \(-0.289695\pi\)
0.613663 + 0.789568i \(0.289695\pi\)
\(500\) 1.52786 0.0683282
\(501\) −0.944272 −0.0421870
\(502\) 6.29180 0.280817
\(503\) −1.52786 −0.0681241 −0.0340620 0.999420i \(-0.510844\pi\)
−0.0340620 + 0.999420i \(0.510844\pi\)
\(504\) −4.47214 −0.199205
\(505\) −14.4721 −0.644002
\(506\) 0 0
\(507\) 7.00000 0.310881
\(508\) −4.00000 −0.177471
\(509\) −6.58359 −0.291813 −0.145906 0.989298i \(-0.546610\pi\)
−0.145906 + 0.989298i \(0.546610\pi\)
\(510\) 12.9443 0.573182
\(511\) −20.0000 −0.884748
\(512\) 1.00000 0.0441942
\(513\) 7.70820 0.340326
\(514\) 23.8885 1.05368
\(515\) 19.4164 0.855589
\(516\) 9.23607 0.406595
\(517\) 3.05573 0.134391
\(518\) 30.2492 1.32907
\(519\) 9.41641 0.413334
\(520\) −14.4721 −0.634645
\(521\) −16.0000 −0.700973 −0.350486 0.936568i \(-0.613984\pi\)
−0.350486 + 0.936568i \(0.613984\pi\)
\(522\) 4.47214 0.195740
\(523\) −12.2918 −0.537483 −0.268741 0.963212i \(-0.586608\pi\)
−0.268741 + 0.963212i \(0.586608\pi\)
\(524\) −18.4721 −0.806959
\(525\) −24.4721 −1.06805
\(526\) −7.05573 −0.307644
\(527\) 25.8885 1.12772
\(528\) 0.763932 0.0332459
\(529\) 0 0
\(530\) −2.47214 −0.107383
\(531\) 8.94427 0.388148
\(532\) −34.4721 −1.49456
\(533\) 8.94427 0.387419
\(534\) 1.52786 0.0661171
\(535\) −60.3607 −2.60962
\(536\) 3.70820 0.160170
\(537\) −7.41641 −0.320042
\(538\) −30.9443 −1.33410
\(539\) 9.93112 0.427763
\(540\) 3.23607 0.139258
\(541\) 43.8885 1.88692 0.943458 0.331492i \(-0.107552\pi\)
0.943458 + 0.331492i \(0.107552\pi\)
\(542\) 0.944272 0.0405600
\(543\) 6.76393 0.290268
\(544\) 4.00000 0.171499
\(545\) −29.8885 −1.28028
\(546\) 20.0000 0.855921
\(547\) −21.3050 −0.910934 −0.455467 0.890253i \(-0.650528\pi\)
−0.455467 + 0.890253i \(0.650528\pi\)
\(548\) −20.9443 −0.894695
\(549\) −5.23607 −0.223470
\(550\) 4.18034 0.178250
\(551\) 34.4721 1.46856
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) −11.5279 −0.489772
\(555\) −21.8885 −0.929117
\(556\) 0.944272 0.0400460
\(557\) −25.1246 −1.06456 −0.532282 0.846567i \(-0.678665\pi\)
−0.532282 + 0.846567i \(0.678665\pi\)
\(558\) 6.47214 0.273987
\(559\) −41.3050 −1.74701
\(560\) −14.4721 −0.611559
\(561\) 3.05573 0.129013
\(562\) 22.4721 0.947930
\(563\) 6.65248 0.280368 0.140184 0.990125i \(-0.455231\pi\)
0.140184 + 0.990125i \(0.455231\pi\)
\(564\) 4.00000 0.168430
\(565\) 46.8328 1.97027
\(566\) 26.1803 1.10044
\(567\) −4.47214 −0.187812
\(568\) −8.94427 −0.375293
\(569\) −20.0000 −0.838444 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(570\) 24.9443 1.04480
\(571\) 27.7082 1.15955 0.579776 0.814776i \(-0.303140\pi\)
0.579776 + 0.814776i \(0.303140\pi\)
\(572\) −3.41641 −0.142847
\(573\) 2.47214 0.103275
\(574\) 8.94427 0.373327
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 10.3607 0.431321 0.215660 0.976468i \(-0.430810\pi\)
0.215660 + 0.976468i \(0.430810\pi\)
\(578\) −1.00000 −0.0415945
\(579\) −11.8885 −0.494071
\(580\) 14.4721 0.600923
\(581\) 39.1935 1.62602
\(582\) 8.47214 0.351181
\(583\) −0.583592 −0.0241699
\(584\) 4.47214 0.185058
\(585\) −14.4721 −0.598349
\(586\) −13.7082 −0.566281
\(587\) −2.47214 −0.102036 −0.0510180 0.998698i \(-0.516247\pi\)
−0.0510180 + 0.998698i \(0.516247\pi\)
\(588\) 13.0000 0.536111
\(589\) 49.8885 2.05562
\(590\) 28.9443 1.19162
\(591\) −14.9443 −0.614725
\(592\) −6.76393 −0.277996
\(593\) −37.7771 −1.55132 −0.775660 0.631152i \(-0.782583\pi\)
−0.775660 + 0.631152i \(0.782583\pi\)
\(594\) 0.763932 0.0313445
\(595\) −57.8885 −2.37320
\(596\) −1.70820 −0.0699708
\(597\) 9.41641 0.385388
\(598\) 0 0
\(599\) −1.88854 −0.0771638 −0.0385819 0.999255i \(-0.512284\pi\)
−0.0385819 + 0.999255i \(0.512284\pi\)
\(600\) 5.47214 0.223399
\(601\) 34.3607 1.40160 0.700801 0.713357i \(-0.252826\pi\)
0.700801 + 0.713357i \(0.252826\pi\)
\(602\) −41.3050 −1.68346
\(603\) 3.70820 0.151010
\(604\) −5.52786 −0.224926
\(605\) −33.7082 −1.37043
\(606\) −4.47214 −0.181668
\(607\) −26.4721 −1.07447 −0.537235 0.843432i \(-0.680531\pi\)
−0.537235 + 0.843432i \(0.680531\pi\)
\(608\) 7.70820 0.312609
\(609\) −20.0000 −0.810441
\(610\) −16.9443 −0.686054
\(611\) −17.8885 −0.723693
\(612\) 4.00000 0.161690
\(613\) −15.1246 −0.610877 −0.305439 0.952212i \(-0.598803\pi\)
−0.305439 + 0.952212i \(0.598803\pi\)
\(614\) −11.4164 −0.460729
\(615\) −6.47214 −0.260982
\(616\) −3.41641 −0.137651
\(617\) 24.3607 0.980724 0.490362 0.871519i \(-0.336865\pi\)
0.490362 + 0.871519i \(0.336865\pi\)
\(618\) 6.00000 0.241355
\(619\) −31.7082 −1.27446 −0.637230 0.770674i \(-0.719920\pi\)
−0.637230 + 0.770674i \(0.719920\pi\)
\(620\) 20.9443 0.841142
\(621\) 0 0
\(622\) −3.05573 −0.122524
\(623\) −6.83282 −0.273751
\(624\) −4.47214 −0.179029
\(625\) −22.4164 −0.896656
\(626\) −24.4721 −0.978103
\(627\) 5.88854 0.235166
\(628\) −24.6525 −0.983741
\(629\) −27.0557 −1.07878
\(630\) −14.4721 −0.576584
\(631\) 6.00000 0.238856 0.119428 0.992843i \(-0.461894\pi\)
0.119428 + 0.992843i \(0.461894\pi\)
\(632\) 4.47214 0.177892
\(633\) 3.41641 0.135790
\(634\) 28.4721 1.13077
\(635\) −12.9443 −0.513678
\(636\) −0.763932 −0.0302919
\(637\) −58.1378 −2.30350
\(638\) 3.41641 0.135257
\(639\) −8.94427 −0.353830
\(640\) 3.23607 0.127917
\(641\) −4.00000 −0.157991 −0.0789953 0.996875i \(-0.525171\pi\)
−0.0789953 + 0.996875i \(0.525171\pi\)
\(642\) −18.6525 −0.736155
\(643\) −34.5410 −1.36216 −0.681082 0.732207i \(-0.738490\pi\)
−0.681082 + 0.732207i \(0.738490\pi\)
\(644\) 0 0
\(645\) 29.8885 1.17686
\(646\) 30.8328 1.21310
\(647\) −4.94427 −0.194379 −0.0971897 0.995266i \(-0.530985\pi\)
−0.0971897 + 0.995266i \(0.530985\pi\)
\(648\) 1.00000 0.0392837
\(649\) 6.83282 0.268211
\(650\) −24.4721 −0.959876
\(651\) −28.9443 −1.13442
\(652\) 6.47214 0.253468
\(653\) −17.4164 −0.681557 −0.340778 0.940144i \(-0.610691\pi\)
−0.340778 + 0.940144i \(0.610691\pi\)
\(654\) −9.23607 −0.361159
\(655\) −59.7771 −2.33568
\(656\) −2.00000 −0.0780869
\(657\) 4.47214 0.174475
\(658\) −17.8885 −0.697368
\(659\) 1.34752 0.0524921 0.0262460 0.999656i \(-0.491645\pi\)
0.0262460 + 0.999656i \(0.491645\pi\)
\(660\) 2.47214 0.0962278
\(661\) −26.1803 −1.01830 −0.509149 0.860679i \(-0.670040\pi\)
−0.509149 + 0.860679i \(0.670040\pi\)
\(662\) −1.52786 −0.0593821
\(663\) −17.8885 −0.694733
\(664\) −8.76393 −0.340107
\(665\) −111.554 −4.32589
\(666\) −6.76393 −0.262097
\(667\) 0 0
\(668\) −0.944272 −0.0365350
\(669\) −7.41641 −0.286735
\(670\) 12.0000 0.463600
\(671\) −4.00000 −0.154418
\(672\) −4.47214 −0.172516
\(673\) −4.47214 −0.172388 −0.0861941 0.996278i \(-0.527471\pi\)
−0.0861941 + 0.996278i \(0.527471\pi\)
\(674\) −15.8885 −0.612004
\(675\) 5.47214 0.210623
\(676\) 7.00000 0.269231
\(677\) 21.1246 0.811885 0.405942 0.913899i \(-0.366943\pi\)
0.405942 + 0.913899i \(0.366943\pi\)
\(678\) 14.4721 0.555799
\(679\) −37.8885 −1.45403
\(680\) 12.9443 0.496390
\(681\) 4.76393 0.182554
\(682\) 4.94427 0.189326
\(683\) 5.52786 0.211518 0.105759 0.994392i \(-0.466273\pi\)
0.105759 + 0.994392i \(0.466273\pi\)
\(684\) 7.70820 0.294731
\(685\) −67.7771 −2.58963
\(686\) −26.8328 −1.02448
\(687\) −4.29180 −0.163742
\(688\) 9.23607 0.352122
\(689\) 3.41641 0.130155
\(690\) 0 0
\(691\) 43.4164 1.65164 0.825819 0.563935i \(-0.190713\pi\)
0.825819 + 0.563935i \(0.190713\pi\)
\(692\) 9.41641 0.357958
\(693\) −3.41641 −0.129779
\(694\) 21.5279 0.817187
\(695\) 3.05573 0.115910
\(696\) 4.47214 0.169516
\(697\) −8.00000 −0.303022
\(698\) −31.8885 −1.20700
\(699\) −15.8885 −0.600960
\(700\) −24.4721 −0.924960
\(701\) −37.1246 −1.40218 −0.701089 0.713074i \(-0.747302\pi\)
−0.701089 + 0.713074i \(0.747302\pi\)
\(702\) −4.47214 −0.168790
\(703\) −52.1378 −1.96641
\(704\) 0.763932 0.0287918
\(705\) 12.9443 0.487509
\(706\) 31.8885 1.20014
\(707\) 20.0000 0.752177
\(708\) 8.94427 0.336146
\(709\) 41.0132 1.54028 0.770141 0.637874i \(-0.220186\pi\)
0.770141 + 0.637874i \(0.220186\pi\)
\(710\) −28.9443 −1.08626
\(711\) 4.47214 0.167718
\(712\) 1.52786 0.0572591
\(713\) 0 0
\(714\) −17.8885 −0.669462
\(715\) −11.0557 −0.413461
\(716\) −7.41641 −0.277164
\(717\) 12.9443 0.483413
\(718\) 33.3050 1.24293
\(719\) −20.9443 −0.781090 −0.390545 0.920584i \(-0.627713\pi\)
−0.390545 + 0.920584i \(0.627713\pi\)
\(720\) 3.23607 0.120601
\(721\) −26.8328 −0.999306
\(722\) 40.4164 1.50414
\(723\) 3.52786 0.131203
\(724\) 6.76393 0.251380
\(725\) 24.4721 0.908872
\(726\) −10.4164 −0.386589
\(727\) −43.3050 −1.60609 −0.803046 0.595917i \(-0.796789\pi\)
−0.803046 + 0.595917i \(0.796789\pi\)
\(728\) 20.0000 0.741249
\(729\) 1.00000 0.0370370
\(730\) 14.4721 0.535638
\(731\) 36.9443 1.36643
\(732\) −5.23607 −0.193531
\(733\) 8.29180 0.306264 0.153132 0.988206i \(-0.451064\pi\)
0.153132 + 0.988206i \(0.451064\pi\)
\(734\) 17.4164 0.642851
\(735\) 42.0689 1.55173
\(736\) 0 0
\(737\) 2.83282 0.104348
\(738\) −2.00000 −0.0736210
\(739\) −15.0557 −0.553834 −0.276917 0.960894i \(-0.589313\pi\)
−0.276917 + 0.960894i \(0.589313\pi\)
\(740\) −21.8885 −0.804639
\(741\) −34.4721 −1.26637
\(742\) 3.41641 0.125420
\(743\) 4.00000 0.146746 0.0733729 0.997305i \(-0.476624\pi\)
0.0733729 + 0.997305i \(0.476624\pi\)
\(744\) 6.47214 0.237280
\(745\) −5.52786 −0.202525
\(746\) −13.5967 −0.497812
\(747\) −8.76393 −0.320656
\(748\) 3.05573 0.111728
\(749\) 83.4164 3.04797
\(750\) 1.52786 0.0557897
\(751\) 18.0000 0.656829 0.328415 0.944534i \(-0.393486\pi\)
0.328415 + 0.944534i \(0.393486\pi\)
\(752\) 4.00000 0.145865
\(753\) 6.29180 0.229286
\(754\) −20.0000 −0.728357
\(755\) −17.8885 −0.651031
\(756\) −4.47214 −0.162650
\(757\) 32.6525 1.18677 0.593387 0.804917i \(-0.297790\pi\)
0.593387 + 0.804917i \(0.297790\pi\)
\(758\) −0.291796 −0.0105985
\(759\) 0 0
\(760\) 24.9443 0.904824
\(761\) −22.9443 −0.831729 −0.415865 0.909427i \(-0.636521\pi\)
−0.415865 + 0.909427i \(0.636521\pi\)
\(762\) −4.00000 −0.144905
\(763\) 41.3050 1.49534
\(764\) 2.47214 0.0894387
\(765\) 12.9443 0.468001
\(766\) −24.9443 −0.901273
\(767\) −40.0000 −1.44432
\(768\) 1.00000 0.0360844
\(769\) −3.52786 −0.127218 −0.0636090 0.997975i \(-0.520261\pi\)
−0.0636090 + 0.997975i \(0.520261\pi\)
\(770\) −11.0557 −0.398421
\(771\) 23.8885 0.860325
\(772\) −11.8885 −0.427878
\(773\) 15.8197 0.568994 0.284497 0.958677i \(-0.408173\pi\)
0.284497 + 0.958677i \(0.408173\pi\)
\(774\) 9.23607 0.331984
\(775\) 35.4164 1.27219
\(776\) 8.47214 0.304132
\(777\) 30.2492 1.08518
\(778\) −10.2918 −0.368979
\(779\) −15.4164 −0.552350
\(780\) −14.4721 −0.518186
\(781\) −6.83282 −0.244497
\(782\) 0 0
\(783\) 4.47214 0.159821
\(784\) 13.0000 0.464286
\(785\) −79.7771 −2.84737
\(786\) −18.4721 −0.658879
\(787\) −30.7639 −1.09662 −0.548308 0.836277i \(-0.684728\pi\)
−0.548308 + 0.836277i \(0.684728\pi\)
\(788\) −14.9443 −0.532368
\(789\) −7.05573 −0.251191
\(790\) 14.4721 0.514895
\(791\) −64.7214 −2.30123
\(792\) 0.763932 0.0271451
\(793\) 23.4164 0.831541
\(794\) 9.05573 0.321376
\(795\) −2.47214 −0.0876776
\(796\) 9.41641 0.333756
\(797\) 7.59675 0.269091 0.134545 0.990907i \(-0.457043\pi\)
0.134545 + 0.990907i \(0.457043\pi\)
\(798\) −34.4721 −1.22030
\(799\) 16.0000 0.566039
\(800\) 5.47214 0.193469
\(801\) 1.52786 0.0539844
\(802\) 8.94427 0.315833
\(803\) 3.41641 0.120562
\(804\) 3.70820 0.130778
\(805\) 0 0
\(806\) −28.9443 −1.01952
\(807\) −30.9443 −1.08929
\(808\) −4.47214 −0.157329
\(809\) 25.0557 0.880912 0.440456 0.897774i \(-0.354817\pi\)
0.440456 + 0.897774i \(0.354817\pi\)
\(810\) 3.23607 0.113704
\(811\) −21.3050 −0.748118 −0.374059 0.927405i \(-0.622034\pi\)
−0.374059 + 0.927405i \(0.622034\pi\)
\(812\) −20.0000 −0.701862
\(813\) 0.944272 0.0331171
\(814\) −5.16718 −0.181110
\(815\) 20.9443 0.733646
\(816\) 4.00000 0.140028
\(817\) 71.1935 2.49075
\(818\) −0.111456 −0.00389697
\(819\) 20.0000 0.698857
\(820\) −6.47214 −0.226017
\(821\) 48.4721 1.69169 0.845845 0.533429i \(-0.179097\pi\)
0.845845 + 0.533429i \(0.179097\pi\)
\(822\) −20.9443 −0.730515
\(823\) −7.63932 −0.266290 −0.133145 0.991097i \(-0.542508\pi\)
−0.133145 + 0.991097i \(0.542508\pi\)
\(824\) 6.00000 0.209020
\(825\) 4.18034 0.145541
\(826\) −40.0000 −1.39178
\(827\) −27.5967 −0.959633 −0.479816 0.877369i \(-0.659297\pi\)
−0.479816 + 0.877369i \(0.659297\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) −28.3607 −0.984414
\(831\) −11.5279 −0.399897
\(832\) −4.47214 −0.155043
\(833\) 52.0000 1.80169
\(834\) 0.944272 0.0326975
\(835\) −3.05573 −0.105748
\(836\) 5.88854 0.203660
\(837\) 6.47214 0.223710
\(838\) 30.0689 1.03871
\(839\) 10.1115 0.349086 0.174543 0.984650i \(-0.444155\pi\)
0.174543 + 0.984650i \(0.444155\pi\)
\(840\) −14.4721 −0.499336
\(841\) −9.00000 −0.310345
\(842\) 5.23607 0.180447
\(843\) 22.4721 0.773981
\(844\) 3.41641 0.117598
\(845\) 22.6525 0.779269
\(846\) 4.00000 0.137523
\(847\) 46.5836 1.60063
\(848\) −0.763932 −0.0262335
\(849\) 26.1803 0.898507
\(850\) 21.8885 0.750771
\(851\) 0 0
\(852\) −8.94427 −0.306426
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 23.4164 0.801293
\(855\) 24.9443 0.853076
\(856\) −18.6525 −0.637528
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) −3.41641 −0.116634
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 29.8885 1.01919
\(861\) 8.94427 0.304820
\(862\) −3.41641 −0.116363
\(863\) −38.8328 −1.32188 −0.660942 0.750437i \(-0.729843\pi\)
−0.660942 + 0.750437i \(0.729843\pi\)
\(864\) 1.00000 0.0340207
\(865\) 30.4721 1.03608
\(866\) −5.41641 −0.184057
\(867\) −1.00000 −0.0339618
\(868\) −28.9443 −0.982433
\(869\) 3.41641 0.115894
\(870\) 14.4721 0.490651
\(871\) −16.5836 −0.561914
\(872\) −9.23607 −0.312773
\(873\) 8.47214 0.286738
\(874\) 0 0
\(875\) −6.83282 −0.230991
\(876\) 4.47214 0.151099
\(877\) 32.2492 1.08898 0.544489 0.838768i \(-0.316723\pi\)
0.544489 + 0.838768i \(0.316723\pi\)
\(878\) 36.9443 1.24681
\(879\) −13.7082 −0.462366
\(880\) 2.47214 0.0833357
\(881\) −12.5836 −0.423952 −0.211976 0.977275i \(-0.567990\pi\)
−0.211976 + 0.977275i \(0.567990\pi\)
\(882\) 13.0000 0.437733
\(883\) 22.4721 0.756248 0.378124 0.925755i \(-0.376569\pi\)
0.378124 + 0.925755i \(0.376569\pi\)
\(884\) −17.8885 −0.601657
\(885\) 28.9443 0.972951
\(886\) −32.9443 −1.10678
\(887\) 0.944272 0.0317055 0.0158528 0.999874i \(-0.494954\pi\)
0.0158528 + 0.999874i \(0.494954\pi\)
\(888\) −6.76393 −0.226983
\(889\) 17.8885 0.599963
\(890\) 4.94427 0.165732
\(891\) 0.763932 0.0255927
\(892\) −7.41641 −0.248320
\(893\) 30.8328 1.03178
\(894\) −1.70820 −0.0571309
\(895\) −24.0000 −0.802232
\(896\) −4.47214 −0.149404
\(897\) 0 0
\(898\) −19.8885 −0.663689
\(899\) 28.9443 0.965346
\(900\) 5.47214 0.182405
\(901\) −3.05573 −0.101801
\(902\) −1.52786 −0.0508723
\(903\) −41.3050 −1.37454
\(904\) 14.4721 0.481336
\(905\) 21.8885 0.727600
\(906\) −5.52786 −0.183651
\(907\) 18.1803 0.603668 0.301834 0.953360i \(-0.402401\pi\)
0.301834 + 0.953360i \(0.402401\pi\)
\(908\) 4.76393 0.158097
\(909\) −4.47214 −0.148331
\(910\) 64.7214 2.14549
\(911\) −43.4164 −1.43845 −0.719225 0.694777i \(-0.755503\pi\)
−0.719225 + 0.694777i \(0.755503\pi\)
\(912\) 7.70820 0.255244
\(913\) −6.69505 −0.221574
\(914\) −36.4721 −1.20639
\(915\) −16.9443 −0.560160
\(916\) −4.29180 −0.141805
\(917\) 82.6099 2.72802
\(918\) 4.00000 0.132020
\(919\) 7.52786 0.248321 0.124161 0.992262i \(-0.460376\pi\)
0.124161 + 0.992262i \(0.460376\pi\)
\(920\) 0 0
\(921\) −11.4164 −0.376183
\(922\) 22.0000 0.724531
\(923\) 40.0000 1.31662
\(924\) −3.41641 −0.112392
\(925\) −37.0132 −1.21699
\(926\) 24.0000 0.788689
\(927\) 6.00000 0.197066
\(928\) 4.47214 0.146805
\(929\) 28.8328 0.945974 0.472987 0.881069i \(-0.343176\pi\)
0.472987 + 0.881069i \(0.343176\pi\)
\(930\) 20.9443 0.686790
\(931\) 100.207 3.28414
\(932\) −15.8885 −0.520447
\(933\) −3.05573 −0.100040
\(934\) 40.1803 1.31474
\(935\) 9.88854 0.323390
\(936\) −4.47214 −0.146176
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) −16.5836 −0.541473
\(939\) −24.4721 −0.798618
\(940\) 12.9443 0.422196
\(941\) −15.8197 −0.515706 −0.257853 0.966184i \(-0.583015\pi\)
−0.257853 + 0.966184i \(0.583015\pi\)
\(942\) −24.6525 −0.803221
\(943\) 0 0
\(944\) 8.94427 0.291111
\(945\) −14.4721 −0.470779
\(946\) 7.05573 0.229402
\(947\) 51.1935 1.66357 0.831783 0.555102i \(-0.187321\pi\)
0.831783 + 0.555102i \(0.187321\pi\)
\(948\) 4.47214 0.145248
\(949\) −20.0000 −0.649227
\(950\) 42.1803 1.36851
\(951\) 28.4721 0.923272
\(952\) −17.8885 −0.579771
\(953\) −23.7771 −0.770215 −0.385108 0.922872i \(-0.625836\pi\)
−0.385108 + 0.922872i \(0.625836\pi\)
\(954\) −0.763932 −0.0247332
\(955\) 8.00000 0.258874
\(956\) 12.9443 0.418648
\(957\) 3.41641 0.110437
\(958\) 11.0557 0.357194
\(959\) 93.6656 3.02462
\(960\) 3.23607 0.104444
\(961\) 10.8885 0.351243
\(962\) 30.2492 0.975274
\(963\) −18.6525 −0.601068
\(964\) 3.52786 0.113625
\(965\) −38.4721 −1.23846
\(966\) 0 0
\(967\) −11.4164 −0.367127 −0.183563 0.983008i \(-0.558763\pi\)
−0.183563 + 0.983008i \(0.558763\pi\)
\(968\) −10.4164 −0.334796
\(969\) 30.8328 0.990493
\(970\) 27.4164 0.880288
\(971\) −21.1246 −0.677921 −0.338961 0.940801i \(-0.610075\pi\)
−0.338961 + 0.940801i \(0.610075\pi\)
\(972\) 1.00000 0.0320750
\(973\) −4.22291 −0.135380
\(974\) −25.8885 −0.829522
\(975\) −24.4721 −0.783736
\(976\) −5.23607 −0.167602
\(977\) −54.8328 −1.75426 −0.877129 0.480256i \(-0.840544\pi\)
−0.877129 + 0.480256i \(0.840544\pi\)
\(978\) 6.47214 0.206956
\(979\) 1.16718 0.0373034
\(980\) 42.0689 1.34384
\(981\) −9.23607 −0.294885
\(982\) −33.3050 −1.06280
\(983\) −27.4164 −0.874448 −0.437224 0.899353i \(-0.644038\pi\)
−0.437224 + 0.899353i \(0.644038\pi\)
\(984\) −2.00000 −0.0637577
\(985\) −48.3607 −1.54090
\(986\) 17.8885 0.569687
\(987\) −17.8885 −0.569399
\(988\) −34.4721 −1.09670
\(989\) 0 0
\(990\) 2.47214 0.0785696
\(991\) −1.52786 −0.0485342 −0.0242671 0.999706i \(-0.507725\pi\)
−0.0242671 + 0.999706i \(0.507725\pi\)
\(992\) 6.47214 0.205491
\(993\) −1.52786 −0.0484853
\(994\) 40.0000 1.26872
\(995\) 30.4721 0.966032
\(996\) −8.76393 −0.277696
\(997\) 22.9443 0.726652 0.363326 0.931662i \(-0.381641\pi\)
0.363326 + 0.931662i \(0.381641\pi\)
\(998\) 27.4164 0.867851
\(999\) −6.76393 −0.214001
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3174.2.a.s.1.2 2
3.2 odd 2 9522.2.a.q.1.1 2
23.22 odd 2 138.2.a.d.1.1 2
69.68 even 2 414.2.a.f.1.2 2
92.91 even 2 1104.2.a.j.1.1 2
115.22 even 4 3450.2.d.x.2899.4 4
115.68 even 4 3450.2.d.x.2899.1 4
115.114 odd 2 3450.2.a.be.1.1 2
161.160 even 2 6762.2.a.cb.1.2 2
184.45 odd 2 4416.2.a.bh.1.2 2
184.91 even 2 4416.2.a.bl.1.2 2
276.275 odd 2 3312.2.a.bc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
138.2.a.d.1.1 2 23.22 odd 2
414.2.a.f.1.2 2 69.68 even 2
1104.2.a.j.1.1 2 92.91 even 2
3174.2.a.s.1.2 2 1.1 even 1 trivial
3312.2.a.bc.1.2 2 276.275 odd 2
3450.2.a.be.1.1 2 115.114 odd 2
3450.2.d.x.2899.1 4 115.68 even 4
3450.2.d.x.2899.4 4 115.22 even 4
4416.2.a.bh.1.2 2 184.45 odd 2
4416.2.a.bl.1.2 2 184.91 even 2
6762.2.a.cb.1.2 2 161.160 even 2
9522.2.a.q.1.1 2 3.2 odd 2